В каких единицах измеряется напряженность поля. Элементарный заряд. Закон сохранений заряда Проводники Полупроводники Диэлектрики Закон Кулона

Прежде чем выяснять, как определить напряженность электрического поля, нужно обязательно понять суть этого явления.

Свойства электрического поля

В создании электрического поля участвуют подвижные и неподвижные заряды. Наличие поля проявляется в его силовом воздействии на них. Кроме того, поле способно создавать индукцию зарядов, находящихся на поверхности проводников. Когда поле создается с помощью неподвижных зарядов, его считают стационарным электрическим полем. Другое название - электростатическое поле. Является одной из разновидностей электромагнитного поля, с помощью которого происходят все силовые взаимодействия, возникающие между заряженными частицами.

В чем измеряется напряженность электрического поля

Напряженность - есть векторная величина, оказывающая силовое воздействие на заряженные частицы. Величина определяется как отношение силы, направленной с его стороны, к величине точечного пробного электрозаряда в конкретной точке этого поля. Пробный электрозаряд вносится в электрополе специально, чтобы можно было рассчитать напряженность.

Кроме теории, существуют практические способы, как определить напряженность электрического поля:

  1. В произвольном электрическом поле, необходимо взять тело, содержащее электрозаряд. Размеры этого тела должны быть меньше, чем размеры тела, с помощью которого генерируется электрическое поле. Для этой цели можно использовать небольшой металлический шарик с электрозарядом. Необходимо измерить заряд шарика с помощью электрометра и поместить в поле. Действующую на шарик силу необходимо уравновесить динамометром. После этого с динамометра снимаются показания, выраженные в ньютонах. Если значение силы разделить на величину заряда, то получится значение напряженности, выраженное в вольт/метр.
  2. Напряженность поля в определенной точке, удаленной от заряда на какую-либо длину, вначале определяется измерением расстояния между ними. Затем, величина делится на полученное расстояние, возведенное в квадрат. К полученному результату применяется коэффициент 9*10^9.
  3. В конденсаторе определение напряженности начинается с измерения напряжения между его пластинами с помощью вольтметра. Далее, необходимо измерить расстояние между пластинами. Значение в вольтах делится на расстояние между пластинами в метрах. Полученный результат и будет значением напряженности электрического поля.

Вокруг всякого электрического заряда всегда существует электрическое поле.

Посредством электростатического поля осуществляется взаимодействие между зарядами. Само понятие поля оказалось весьма плодотворным и широко используется в современной физике. Появление поля означает, что что-то изменилось в окружающем нас пространстве. Математически поле описывается величиной, меняющейся от точки к точке. Например, можно рассмотреть поле скоростей в текущей жидкости. В каждой точке объема жидкости задан вектор скорости, который может меняться со временем (нестационарное течение), а может и быть постоянным (стационарное течение). Это пример векторного поля. К этому же типу полей относится и поле неподвижных электрических зарядов.

Напишем выражение для силы, действующей на точечный заряд в результате его взаимодействия с системой точечных зарядов (соотношение Дополнения 1)

Здесь - радиус-вектор точки, в которой находится заряд . Заряд , на который, действует сила, в подобных ситуациях иногда называют «пробным» зарядом, выписан отдельным множителем. Выражение, стоящее в круглых скобках, определяется исключительно свойствами той системы зарядов, которая воздействует на заряд . Естественно, что это воздействие (сила) зависит от того, где он находится, соответственно, выражение в круглых скобках зависит от радиус-вектора , определяющего местоположение заряда . Следуя изложенной выше идее об электростатическом поле существующем вокруг каждого заряда и, разумеется, системы зарядов, введем силовую характеристику этого поля, называемую напряженностью электрического поля.

Напряженностью электрического поля называется вектор , равный отношению силы, действующей на точечный заряд к алгебраической величине этого заряда (рис. 1.12)

Рис. 1.12. Вектор напряженности электрического поля отрицательного и положительного точечного заряда

Из и определения напряженности вытекает, что напряженность поля произвольной системы покоящихся зарядов можно записать в виде

Действительно, сила, с которой данная система зарядов действует на точечный заряд, равна векторной сумме сил, с которыми действует на него каждый из зарядов системы. Отсюда следует, что напряженность электрического поля системы зарядов определяется векторной суммой напряженностей полей, создаваемых отдельными зарядами системы. Имеет место так называемый принцип суперпозиции (независимого наложения) электрических полей

Принцип суперпозиции является одним из наиболее общих принципов современной физики. Подчеркнем, что напряженности поля складываются векторно.

На рис. 1.13 иллюстрируется принцип суперпозиции полей на примере поля, создаваемого двумя точечными зарядами.


Рис. 1.13. Принцип суперпозиции электрических полей

Для одного заряда , находящегося в начале координат , для напряженности создаваемого им поля в точке с радиус-вектором получаем (индекс 1 опущен):

Напряженность поля точечного заряда в различных точках пространства, в общем случае различна и по величине и по направлению (рис. 1.14). Поле точечного заряда - центральное поле, центр симметрии поля совпадает с точкой, в которой находится заряд.

Рис. 1.14. Векторы напряженности электрического поля заряда q в разных точках пространства

На практике чаще употребляют другое название этой единицы - «вольт на метр » (В/м) (про единицу «вольт » речь пойдет несколько позже).

Характерные значения напряженностей электрических полей, встречающихся в нашем мире, приведены на рис. 1.15.


Рис. 1.15. Характерные значения напряженностей электрических полей, встречающихся в природе

Обратим внимание на сходство закона Кулона с законом всемирного тяготения

Роль зарядов играют массы, а гравитационная постоянная G аналогична коэффициенту Знак минус соответствует тому, что гравитационное взаимодействие всегда является притяжением. Можно ввести и вектор напряженности гравитационного поля как отношение силы , например, к пробной массе :

Если при этом - масса Земли, а её радиус, то есть ни что иное, как хорошо знакомое ускорение свободного падения м/с 2 (с точностью до весьма малой центробежной силы инерции, входящей в силу тяжести )

Пример 4. Среднее расстояние между электроном и протоном в атоме водорода равно r = 5,3·10 –11 м (рис. 1.16). Найти силы электростатического и гравитационного притяжения между ними и определить отношение этих сил.

Рис. 1.16. Электрон и протон в атоме водорода

Решение. Из закона Кулона имеем

В свою очередь из закона всемирного тяготения следует

Отношение сил не зависит от расстояния между электроном и протоном и равно

Этот расчет показывает, что в масштабах атомов и молекул силы гравитации столь меньше электростатических, что их можно не принимать во внимание.

Почему же в макромире, где мы обитаем, с законом гравитации мы знакомимся после первой же шишки на первых же шагах в детстве, а закон Кулона остается неизвестным многим из наших сограждан даже после окончания средней школы? Дело в том, что в макромире, как мы видели, положительные и отрицательные электрические заряды в телах скомпенсированы, так что в обычной жизни мы имеем дело с относительно небольшими избыточными зарядами. В то же время все тяготеющие массы имеют один и тот же знак, так что никакой компенсации масс не происходит, и силы гравитации проявляют себя в масштабах макромира в большей степени.

Электрическое поле можно задать, указав для каждой точки величину и направление вектора напряженности электрического поля . Для наглядного изображения электрического поля используют силовые линии (или линии векторного поля ).

На рис. 1.17 показана силовая линия электрического поля. Векторы напряженности электрического поля направлены по касательной к силовой линии.


Рис. 1.17. Векторы напряженности электрического поля направлены по касательной к силовым линиям

Число линий, пронизывающих перпендикулярную к ним площадку единичной площади, пропорционально величине (модулю) напряженности электрического поля в данном месте. Другими словами силовые линии проводятся гуще там, где модуль напряженности поля больше. Таким образом, конфигурация силовых линий позволяет судить об изменении направления и величины вектора в пространстве. Картина линий векторного поля (не обязательно электрического или магнитного) весьма наглядный графический способ отображения его основных свойств.

Отметим некоторые важные свойства силовых линий электростатического поля:


Рис. 1.18. Силовые линии точечного заряда: 1 - q > 0; 2 - q < 0

В первом случае силовые линии начинаются на положительном точечном заряде и уходят в бесконечность, во втором случае силовые линии приходят из бесконечности и заканчиваются на отрицательном точечном заряде.

Силовые линии электрического поля, созданного двумя равными по модулю точечными одноименными зарядами, представлены на рис. 1.19.

Рис. 1.19. Силовые линии электрического поля, образованного двумя равными положительными точечными зарядами

Картина силовых линий электрического поля, созданного двумя равными по модулю точечными разноименными зарядами, приведена на рис. 1.20.

Рис. 1.20. Силовые линии электрического поля, образованного двумя разноименными равными по модулю точечными зарядами

Отметим, что, показанная (вместе со своим полем) на рис. 1.20 система двух равных по величине и противоположных по знаку зарядов, называется электрическим диполем.

Густота и направление силовых линий по всему объему однородного электрического поля сохраняются неизменными. Такое поле графически изображается равноотстоящими друг от друга параллельными прямыми линиями.

В дальнейшем будет показано, что бесконечная равномерно заряженная плоскость создает вокруг себя однородное электрическое поле. Линии напряженности поля направлены перпендикулярно заряженной плоскости и направлены от нее, если плоскость заряжена положительно, и к ней, если плоскость заряжена отрицательно (см. рис. 1.21).

Рис. 1.21. Электрическое поле равномерно положительно заряженной плоскости

Силовые линии электрического поля можно исследовать экспериментально с помощью установки, изображенной на рис. 1.22. Электроды, присоединенные к источнику высокого напряжения, погружены в касторовое масло со взвесью мелких диэлектрических частиц. При подаче напряжения на электроды частицы выстраиваются цепочками вдоль силовых линий и показывают распределение поля в пространстве между электродами. Используя электроды различной формы, можно исследовать поле точечных зарядов одного и разных знаков, поле плоского и цилиндрического конденсаторов и др.


Рис. 1.22. Экспериментальное исследование силовых линий электростатического поля

Поведение заряда в заданном электрическом поле описывается вторым законом Ньютона

(Здесь имеется в виду, что никакие другие силы на заряд не действуют; в противном случае в правую часть следовало бы добавить соответствующие слагаемые).

Один из методов определения заряда электрона (метод Милликена) основан на наблюдении движения капелек масла в вертикальном электростатическом поле плоского конденсатора (рис. 1.23). В пространстве между двумя пластинами конденсатора создавалось электрическое поле. Сюда впрыскивались капельки масла. Под действием света воздух между пластинами ионизировался, образующиеся при этом свободные электроны попадали в капельки и капельки заряжались.


Рис. 1.23. Схема опыта Милликена

Наблюдалось движение капельки радиусом 1,64 мкм и плотностью 0,851 г/см 3 . Было замечено, что капелька переставала падать при электрическом поле напряженностью 1,95·10 5 В/м. Это означало, что электростатическая сила qE компенсировала силу тяжести mg .

Масса капельки равна

Отсюда находим заряд капельки

то есть капелька несла пять электронных зарядов. Именно в таких экспериментах было обнаружено квантование электрического заряда и определена его минимальная величина e .

Движением заряженных частиц можно управлять, с помощью электрического поля нужной величины и направления. Так происходит, например, в электроннолучевой трубке осциллографа.

На рис. 1.24 показывается движение электронного луча, рисующего на экране электроннолучевой трубки с электрическим отклонением синусоиду. В осциллографе на вертикальные отклоняющие пластины подан усиленный исследуемый сигнал, а на горизонтальные - пилообразное напряжение развёртки. В результате электронный луч «рисует» зависимость исследуемого сигнала от времени на экране осциллографа.


Рис. 1.24. Принцип действия электроннолучевой трубки

Определение напряженности поля очень часто используется в виде

В силу определения (или, очевидным образом, это одно и то же) напряженность электрического поля называют его силовой характеристикой - оно определяет силу, действующую на заряд, помещенный в поле.

Пример 5. В пространство между пластинами плоского конденсатора влетает частица, движущаяся параллельно пластинам вдоль оси конденсатора (рис. 1.25). Начальную кинетическую энергию частица по­лучила, пройдя ускоряющую разность потенциалов Под действием поля конденсатора частица отклоняется к одной из пластин (в зависимости от знака заряда) и в конечном итоге попадает на нее. Это расстояние можно измерить. Известно также расстояние между пластинами и напряжение на конденсаторе. Можно ли по этим данным установить тип частицы (найдя ее удельный заряд, т. е. отношение заряда к массе )?

Решение. Решим задачу сначала методом размерностей. Пройденное расстояние должно быть функцией параметров задачи:

Вспоминая, что произведение потенциала на заряд дает энергию, размерность которой получаем


Рис. 1.25. движение заряженной частицы между пластинами плоского конденсатора

Подставляя эту размерность, получаем уравнение:

Сравнивая размерности в обеих частях равенства, приходим к уравнениям:

Последнее уравнение, следующее из отсутствия в левой части величины размерности времени, сразу дает нам или После этого немедленно находим: Подставляя найденные значения, получаем:

Произвольная степень (показатель степени b определить не удалось) означает, что результат зависит от произвольной функции безразмерного отношения

Вид этой функции мы пока не знаем: если в задачу входят величины одинаковой размерности, то функцию их отношения с помощью анализа размерности найти, естественно, не удастся. Но мы уже можем ответить на вопрос задачи: в ответ не вошли параметры, характеризующие частицу - ни ее масса, ни ее заряд. Все частицы при заданных усло­виях будут отклоняться одинаково, и использовать такой прибор для их идентификации нельзя.

Приведем теперь точное решение задачи. Начальную скорость частицы находим из соотношения

В конденсаторе частица находится под действием электрического поля и приобретает поперечное ускорение Расстояние до попадания на пластину она пройдет за время t :

откуда находим время полета:

В продольном же направлении за это время частица пролетит расстояние

Мы приходим к тому же выводу о независимости от характеристик частицы. К тому же, теперь найдена функция оставшаяся не опреде­ленной в нашем предварительном результате.

В Главе 4 раздела «Механика» было показано, что консервативная сила связана с потенциальной энергией соотношением

Здесь знак - общепринятое обозначение векторного оператора «набла», результат действия которого на скалярную функцию координат есть градиент этой функции. Явный вид оператора набла в декартовых координатах следующий:

Подставив в и разделив на , получаем

Скалярная функция называется потенциалом электрического поля .

Как видно из (1.13), потенциальная энергия точечного заряда в поле с потенциалом равна

а действующая на него сила

В Дополнении 3 разобран пример использования этих соотношений.

Напряженность поля определяет силу, действующую в поле на точечный заряд, а потенциал - его потенциальную энергию в этом поле. Поэтому, следуя смыслу соотношений и, напряженность электрического поля называют силовой характеристикой поля, а потенциал - его энергетической характеристикой.

Как и потенциальная энергия, потенциал поля всегда определен с точностью до аддитивной постоянной. Это видно из: поскольку набла есть дифференциальный оператор, потенциалы и физически тождественны, так как им соответствует поле одной и той же напряженности

Это позволяет нормировать потенциал, произвольно выбирая некоторую точку и полагая потенциал в этой точке равным нулю

Учитывая, что и напряженность поля, и потенциал поля убывают с ростом расстояния до системы зарядов, создающей поле, во всех тех случаях, когда конечный заряд распределен по конечной области пространства, нормировать потенциал естественно и удобно на «нуль на бесконечности», то есть полагать его равным нулю на бесконечном удалении от системы зарядов

Напряженность электрического поля является векторной величиной, а значит имеет численную величину и направление. Величина напряженности электрического поля имеет свою размерность, которая зависит от способа ее вычисления.

Электрическая сила взаимодействия зарядов описывается как бесконтактное действие, а иначе говоря имеет место дальнодействие, то есть действие на расстоянии. Для того, чтобы описать такое дальнодействие удобно ввести понятие и с его помощью объяснить действие на расстоянии.

Давайте возьмем электрический заряд, который мы обозначим символом Q . Этот электрический заряд создает электрическое поле, то есть он является источником действия силы. Так как во вселенной всегда имеется хотя бы один положительный и хотя бы один отрицательный заряд, которые действую друг на друга на любом, даже бесконечно далеком расстоянии, то любой заряд является источником силы , а значит уместно описание создаваемого ими электрического поля. В нашем случае заряд Q является источником электрического поля и мы будем его рассматривать именно как источник поля.

источника заряда может быть измерена с помощью любого другого заряда, находящегося где-то в его окрестностях. Заряд, который используется для измерения напряженности электрического поля называют пробным зарядом , так как он используется для проверки напряженности поля. Пробный заряд имеет некоторое количество заряда и обозначается символом q .

При помещении пробного заряда в электрическое поле источника силы (заряд Q ), пробный заряд будет испытывать действие электрической силы - или притяжения, или отталкивания. Силу можно обозначить как это обычно принять в физике символом F . Тогда величину электрического поля можно определить просто как отношение силы к величине пробного заряда.

Если обозначается символом E , то уравнение может быть переписано в символической форме как

Стандартные метрические единицы измерения напряженности электрического поля возникают из его определения. Таким образом напряженность электрического поля определяется как сила равная 1 Ньютону (Н) деленному на 1 Кулон (Кл). Напряженность электрического поля измеряется в Ньютон/Кулон или иначе Н/Кл. В системе СИ также измеряется в Вольт/метр . Для понимания сути такого предмета как напряженность электрического поля гораздо важнее размерность в метрической системе в Н/Кл , потому как в такой размерность отражается происхождение такой характеристики как напряженность поля. Обозначение в Вольт/Метр делает понятие потенциала поля (Вольт) базовым, что в некоторых областях удобно, но не во всех.

В приведенном выше примере участвуют два заряда Q (источник ) и q пробный . Оба этих заряда являются источником силы, но какой из них следует применять в вышеприведенной формуле? В формуле присутствует только один заряд и это пробный заряд q (не источник).

Напряженность электрического поля не зависит от количества пробного заряда q . На первый взгляд это может привести вас в замешательство, если, конечно, вы задумаетесь над этим. Беда в том, что не все имеют полезную привычку думать и пребывают в так называемом блаженном невежестве. Если вы не думаете, то и замешательства такого рода у вас и не возникнет. Так как же напряженность электрического поля не зависит от q , если q присутствует в уравнении? Отличный вопрос! Но если вы подумаете об этом немного, вы сможете ответить на этот вопрос. Увеличение количества пробного заряда q - скажем, в 2 раза - увеличится и знаменатель уравнения в 2 раза. Но в соответствии с , увеличение заряда также увеличит пропорционально и порождаемую силу F . Увеличится заряд в 2 раза, тогда и сила F возрастет в то же количество раз. Так как знаменатель в уравнении увеличивается в два раза (или три, или четыре), то и числитель увеличится во столько же раз. Эти два изменения компенсируют друг друга, так что можно смело сказать, что напряженность электрического поля не зависит от количества пробного заряда.

Таким образом, независимо от того, какого количества пробный заряд q используется в уравнении, напряженность электрического поля E в любой заданной точке вокруг заряда Q (источника ) будет одинаковой при измерении или вычислении.

Более подробно о формуле напряженности электрического поля

Выше мы коснулись определения напряженности электрического поля в том, как она измеряется. Теперь мы попробуем исследовать более развернутое уравнение с переменными, чтобы яснее представить саму суть вычисления и измерения напряженности электрического поля. Из уравнения мы сможем увидеть, что именно влияет, а что нет. Для этого нам прежде всего потребуется вернутся к .

Закон Кулона утверждает, что электрическая сила F между двумя зарядами прямо пропорциональна произведению количества этих зарядов и обратно пропорциональна квадрату расстояния между их центрами.

Если внести в уравнение Закона Кулона два наших заряда Q (источник ) и q (пробный заряд), тогда мы получим следующую запись:


Если выражение для электрической силы F , как она определяется Законом Кулона подставить в уравнение для напряженности электрического поля E , которое приведено выше, тогда мы получим следующее уравнение:

Обратите внимание, что пробный заряд q был сокращен, то есть убран как в числителе так и в знаменателе. Новая формула для напряженности электрического поля E выражает напряженность поля в терминах двух переменных, которые влияют на нее. Напряженность электрического поля зависит от количества исходного заряда Q и от расстоянии от этого заряда d до точки пространства, то есть геометрического места, в котором и определяется значение напряженности. Таким образом у нас появилась возможность характеризовать через его напряженность.

Закон обратных квадратов

Как и все формулы в физике, формулы для напряженности электрического поля могут быть использованы для алгебраического решения задач (проблем) физики. Точно также, как и любую другую формулу в ее алгебраической записи, можно исследовать и формулу напряженности электрического поля. Такое исследование способствует более глубокому пониманию сути физического явления и характеристик этого явления. Одна из особенностей формулы напряженности поля является то, что она иллюстрирует обратную квадратичную зависимость между напряженностью электрического поля и расстоянием до точки в пространстве от источника поля. Сила электрического поля, создаваемого в источнике заряде Q обратно пропорционально квадрату расстояния от источника. Иначе говорят, что искомая величина обратно пропорциональна квадрату .

Напряженность электрического поля зависит от геометрического места в пространстве, и ее величина уменьшается с увеличением расстояния. Так, например, если расстояние увеличится в 2 раза, то напряженность уменьшится в 4 раза (2 2), если расстояния между уменьшится в 2 раза, то напряженность электрического поля увеличится в 4 раза (2 2). Если же расстояние увеличивается в 3 раза, то напряженность электрического поля уменьшается в 9 раз (3 2). Если расстояние увеличивается в 4 раза, то напряженность электрического поля уменьшается в 16 (4 2).

Направление вектора напряженности электрического поля

Как упоминалось ранее, напряженность электрического поля является векторной величиной. В отличие от скалярной величиной, векторная величина является не полностью описанной, если не определено ее направление. Величина вектора электрического поля рассчитывается как величина силы на любой пробный заряд, расположенный в .

Сила, действующая на пробный заряд может быть направлена либо к источнику заряда или непосредственно от него. Точное направление силы зависит от знаков пробного заряд и источника заряда, имеют ли они тот же знак заряда (тогда происходит отталкивание) или же их знаки противоположные (происходит притяжение). Чтобы решить проблему направления вектора электрического поля, направлен он к источнику или от источника были приняты правила, которые используются всеми учеными мира. Согласно этим правилам направление вектора всегда от заряда с положительным знаком полярности. Это можно представить в виде силовых линий, которые выходят из зарядов положительных знаков и заходят в заряды отрицательных знаков.


Все теги раздела Электротехника .

Определение

Вектор напряженности – это силовая характеристика электрического поля. В некоторой точке поля, напряженность равна силе, с которой поле действует на единичный положительный заряд, размещенный в указанной точке, при этом направление силы и напряженности совпадают. Математическое определение напряженности записывается так:

где – сила, с которой электрическое поле действует на неподвижный, «пробный», точечный заряд q, который размещают в рассматриваемой точке поля. При этом считают, что «пробный» заряд мал на столько, что не искажает исследуемого поля.

Если поле является электростатическим, то его напряженность от времени не зависит.

Если электрическое поле является однородным, то его напряженность во всех точках поля одинакова.

Графически электрические поля можно изображать при помощи силовых линий. Силовыми линиями (линиями напряженности) называют линии, касательные к которым в каждой точке совпадают с направлением вектора напряженности в этой точке поля.

Принцип суперпозиции напряженностей электрических полей

Если поле создано несколькими электрическими полями, то напряженность результирующего поля равна векторной сумме напряженностей отдельных полей:

Допустим, что поле создается системой точечных зарядов и их распределение непрерывно, тогда результирующая напряженность находится как:

интегрирование в выражении (3) проводят по всей области распределения заряда.

Напряженность поля в диэлектрике

Напряженность поля в диэлектрике равна векторной сумме напряженностей полей, создаваемых свободными зарядами и связанными (поляризационными зарядами) :

В том случае, если вещество, которое окружает свободные заряды однородный и изотропный диэлектрик, то напряженность равна:

где – относительная диэлектрическая проницаемость вещества в исследуемой точке поля. Выражение (5) обозначает то, что при заданном распределении зарядов напряженность электростатического поля в однородном изотропном диэлектрике меньше, чем в вакууме в раз.

Напряженность поля точечного заряда

Напряженность поля точечного зарядаq равна:

где Ф/м (система СИ) - электрическая постоянная.

Связь напряженности и потенциала

В общем случае напряженность электрического поля связана с потенциалом как:

где – скалярный потенциал, – векторный потенциал.

§3 Электростатическое поле.

Напряженность электростатического поля

Электрические заряды создай вокруг себя электрическое поле. Поле - одна из форм существования материи. Поле можно исследовать, описать его силовые, энергетические и др. свойства. Поле, создаваемое неподвижными электрическими зарядами, называется ЭЛЕКТРОСТАТИЧЕСКИМ . Для исследования электростатического поля используют пробный точечный положительный заряд - такой заряд, который не искажает исследуемое поле (не вызывает перераспределение зарядов).

Если в поле, создаваемое зарядом q , поместить пробный заряд q 1 на него будет действовать сила F 1 , причем величина этой силы зависит от величины заряда помещаемого в данную точку поля. Если в туже точку поместить заряд q 2 , то сила Кулона F 2 ~ q 2 и т.д.

Однако, отношение силы Кулона к величине пробного заряда, есть величина постоянная для данной точки пространства

и характеризует электрическое поле в той точке, где находится пробный заряд. Эта величина называется напряженностью и является силовой характеристикой электростатического поля.

НАПРЯЖЕННОСТЬ поля есть векторная величина, численно равная силе, действующей на единичный положительный точечный заряд, помещенный в данную точку поля

Направление вектора напряженности совпадает с направлением действия силы.

Определим напряженность поля, создаваемого точечным зарядом q на некотором расстоянии r от него в вакууме

§4 Принцип суперпозиции полей.

Силовые линии вектора Е

Определим значение и направление вектора поля, создаваемого системой неподвижных зарядов q 1 , q 2 , … q n . Результирующая сила , действующая со стороны поля на пробный заряд q , равна векторной сумме сил , приложении к нему со стороны каждого из зарядов q i

Разделив на q , получим

ПРИНЦИП СУПЕРП0ЗИЦИИ (наложения) полей:

Напряженность результирующего поля, создаваемого системой зарядов, равна геометрической (векторной) сумме напряженностей полей, создаваемых в данной точке каждым из зарядов в отдельности.

Электростатическое поле очень наглядно можно изображать с помощью линий напряженности или силовых линий вектора .

СИЛОВОЙ ЛИНИЕЙ вектора напряженности называется кривая, касательная к которой в каждой точке пространства совпадает с направлением вектора .

Принцип построения силовых линий :

3. Для количественного описания вектора Е силовые линии проводят с определенной густотой. Число линий напряженности, пронизывающих единицу площади поверхности, перпендикулярную линиям напряженности, должно быть равно модулю вектора .

ОДНОРОДНЫМ называется поле, у которого вектор в любой точке пространства постоянен по величине и направлению, т.е. силовые линии вектора параллельны и густота их постоянна во всех точках.

Неоднородное поле

Однородное поле

Картина силовых линий изолированных точечных зарядов

Просмотров