Адгезия слоев. Адгезия покрытий

Понятие когезии и адгезии. Смачивание и растекание. Работа адгезии и когезии. Уравнение Дюпре. Краевой угол смачивания. Закон Юнга. Гидрофобные и гидрофильные поверхности

В гетерогенных системах различают межмолекулярное взаимодействие внутри фаз и между ними.

Когезия - притяжение атомов и молекул внутри отдельной фазы . Она определяет существование вещества в конденсированном состоянии и может быть обусловлена межмолекулярными и межатомными силами. Понятие адгезии , смачивания и растекания относятся к межфазным взаимодействиям.

Адгезия обеспечивает между двумя телами соединение определенной прочности благодаря физическим и химическим межмолекулярными силами. Рассмотрим характеристики когезионного процесса. Работа когезии определяется затратой энергии на обратимый процесс разрыва тела по сечению равной единице площади: W k =2  , где W k - работа когезии; - поверхностное натяжение

Так как при разрыве образуется поверхность в две параллельные площади, то в уравнении появляется коэффициент 2. Когезия отражает межмолекулярное взаимодействие внутри гомогенной фазы, то ее можно охарактеризовать такими параметрами как энергия кристаллической решетки, внутреннее давление, летучесть, температура кипения, адгезия результат стремления системы к уменьшению поверхностной энергии. Работа адгезии характеризуется работой обратимого разрыва адгезионной связи, отнесенной к единице площади. Она измеряется в тех же единицах, что и поверхностное натяжение. Полная работа адгезии, приходящаяся на всю площадь контакта тел: W s = W a S

Таким образом, адгезия - работа по разрыву адсорбционных сил с образованием новой поверхности в 1м 2 .

Чтобы получить соотношение между работой адгезии и поверхностным натяжением взаимодействующих компонентов, представим себе две конденсированные фазы 2 и 3, имеющие поверхность на границе с воздухом 1, равную единице площади (рис. 2.4.1.1).

Будем считать, что фазы взаимно нерастворимы. При совмещении этих поверхностей, т.е. при нанесении одного вещества на другое происходит явление адгезии, т.к. система стала двухфазной, то появляется межфазное натяжение  23 . В результате первоначальная энергия Гиббса системы снижается на величину, равную работе адгезии:

G + W a =0, W a = - G .

Изменение энергии Гиббса системы в процессе адгезии:

G нач. = 31 + 21 ;

G кон =  23 ;

;

.

- уравнение Дюпре.

Оно отражает закон сохранения энергии при адгезии. Из него следует, что работа адгезии тем больше, чем больше поверхностные натяжения исходных компонентов и чем меньше конечное межфазное натяжение.

Межфазное натяжение станет равно 0, когда исчезнет межфазная поверхность, что происходит при полном растворении фаз

Учитывая, что W k =2 , и умножая правую часть на дробь , получим:

где W k 2, W k 3 - работа когезии фаз 2 и 3.

Таким образом, условие растворения состоит в том, что работа адгезии между взаимодействующими телами должна быть равна или больше среднего значения суммы работ когезии. От работы когезии надо отличать адгезионную прочность W п .

W п работа, затраченная на разрушение адгезионного соединения . Эта величина отличается тем, что в нее входит как работа разрыва межмолекулярных связей W a , так и работа, затраченная на деформацию компонентов адгезионного соединения W деф :

W п = W a + W деф .

Чем прочнее адгезионное соединение, тем большей деформации будут подвергаться компоненты системы в процессе его разрушения. Работа деформации может превышать обратимую работу адгезии в несколько раз.

Смачивание - поверхностное явление, заключающееся во взаимодействии жидкого с твердым или другим жидким телом при наличии одновременного контакта трех несмешивающихся фаз, одна из которых обычно является газом.

Степень смачиваемости характеризуется безразмерной величиной косинуса краевого угла смачивания или просто краевого угла. При наличии капли жидкости на поверхности жидкой или твердой фазы наблюдаются два процесса при условии, что фазы взаимно нерастворимы.

    Жидкость остается на поверхности другой фазы в виде капли.

    Капля растекается по поверхности.

На рис. 2.4.1.2 показана капля на поверхности твердого тела в условиях равновесия.

Поверхностная энергия твердого тела, стремясь к уменьшению, растягивает каплю по поверхности и равна  31 . Межфазная энергия на границе твердое тело - жидкость стремится сжать каплю, т.е. поверхностная энергия уменьшается за счет уменьшения площади поверхности. Растеканию препятствуют когезионные силы, действующие внутри капли. Действие когезионных сил направлено от границы между жидкой, твердой и газообразной фазами по касательной к сферической поверхности капли и равно  21 . Угол  (тетта), образованный касательной к межфазным поверхностям, ограничивающим смачивающую жидкость, имеет вершину на границе раздела трех фаз и называется краевым углом смачиваемости . При равновесии устанавливается следующее соотношение

- закон Юнга .

Отсюда вытекает количественная характеристика смачивания как косинус краевого угла смачивания
. Чем меньше краевой угол смачивания и, соответственно, чем большеcos , тем лучше смачивание.

Если cos  > 0, то поверхность хорошо смачивается этой жидкостью, если cos  < 0, то жидкость плохо смачивает это тело (кварц – вода – воздух: угол  = 0; «тефлон – вода – воздух»: угол  = 108 0). С точки зрения смачиваемости различают гидрофильные и гидрофобные поверхности.

Если 0< угол <90, то поверхность гидрофильная, если краевой угол смачиваемости >90, то поверхность гидрофобная. Удобная для расчета величины работы адгезии формула получается в результате сочетания формулы Дюпре и закона Юнга:

;

- уравнение Дюпре-Юнга.

Из этого уравнения видна разница между явлениями адгезии и смачиваемости. Разделив обе части на 2, получим

.

Так как смачивание количественно характеризуется cos , то в соответствии с уравнением оно определяется отношением работы адгезии к работе когезии для смачивающей жидкости. Различие между адгезией и смачиванием в том, что смачивание имеет место при наличии контакта трех фаз. Из последнего уравнения можно сделать следующие выводы:

1. При = 0 cos = 1, W a = W k .

2. При = 90 0 cos = 0, W a = W k /2 .

3. При =180 0 cos = -1, W a =0 .

Последнее соотношение не реализуется.

Словарь медицинских терминов

адгезия (лат. adhaesio прилипание, слипание; сип. адгезивный процесс) в морфологии

сращение серозных оболочек в результате воспаления.

Новый толково-словообразовательный словарь русского языка, Т. Ф. Ефремова.

адгезия

ж. Слипание поверхностей двух соприкасающихся разнородных твердых или жидких тел (в физике).

Энциклопедический словарь, 1998 г.

адгезия

АДГЕЗИЯ (от лат. adhaesio - прилипание) сцепление поверхностей разнородных тел. Благодаря адгезии возможны нанесение гальванических и лакокрасочных покрытий, склеивание, сварка и др., а также образование поверхностных пленок (напр., оксидных).

Адгезия

(от лат. adhaesio ≈ прилипание), слипание поверхностей двух разнородных твёрдых или жидких тел. Пример А. ≈ прилипание капелек воды к стеклу. А. обусловлена теми же причинами, что и адсорбция . Количественно А. характеризуется удельной работой, затрачиваемой на разделение тел. Эта работа рассчитывается на единицу площади соприкасающихся поверхностей и зависит от того, как производится их разделение: сдвигом вдоль поверхности раздела или отрывом в направлении, перпендикулярном поверхности. А. иногда оказывается больше, чем когезия, характеризующая силу сцепления частиц внутри данного тела. В этом случае разрыв происходит когезионно ≈ внутри наименее прочного из соприкасающихся тел.

А. твёрдых тел с неровной поверхностью обычно невелика, т. к. они фактически соприкасаются только отдельными выступающими участками своих поверхностей. А. жидкости и твёрдого тела и двух несмешивающихся жидкостей достигает предельно высокого значения вследствие полного контакта по всей площади соприкосновения. При покрытии твёрдого тела полимером в текучем состоянии последний проникает в углубления и поры. После отвердевания полимера возникает связь, иногда называемая механической А. В этом случае для отрыва полимерной плёнки необходимо преодолеть когезию в затвердевшем полимере. Для достижения предельной А. твёрдые тела соединяют в пластическом или эластичном состоянии под давлением, например при склеивании резиновым клеем или при холодной сварке металлов. Прочная А. достигается также при образовании новой твёрдой фазы на поверхности раздела, например в случае гальванических покрытий, или при возникновении поверхностных химических соединений (окисные, сульфидные и др. плёнки).

А. полимеров происходит лучше в том случае, если макромолекулы полярны и имеют большое число химически активных функциональных групп. Для улучшения А. в состав клея или плёнкообразующего полимера вводят активные добавки, молекулы которых одним концом прочно связываются с плёнкой, другим ≈ с подложкой, образуя ориентированный адсорбционный слой. При контакте двух объёмов одного и того же полимера может произойти автогезия (самослипание), когда имеет место диффузия макромолекул или их участков из одного объёма в другой. При этом прочность связи со временем увеличивается, стремясь к пределу ≈ когезионной прочности.

Явление А. имеет место при сварке, паянии, лужении, склеивании, при изготовлении фотоматериалов, а также при нанесении лакокрасочных полимерных покрытий, предохраняющих металлические детали от коррозии; причинами нарушения А. в последнем случае являются напряжения, возникающие вследствие усадки плёнки, а также различие коэффициентов теплового расширения плёнки и металла.

А. не только является условием образования высококачественного покрытия, связующего сварного или клеевого шва, но также и вызывает повышенный износ трущихся деталей. Для устранения А. вводят слой смазки, препятствующий контакту поверхностей.

Лит.: Кротова Н. А., О склеивании и прилипании, М., 1956; Воюцкий С. С., Аутогезия и адгезия высокополимеров, М., 1960; Дерягин Б. В., Кротова Н. А., Адгезия, М.≈ Л., 1949.

В. И. Шимулис.

Википедия

Адгезия

Адгезия в физике - сцепление поверхностей разнородных твёрдых и/или жидких тел. Адгезия обусловлена межмолекулярными взаимодействиями (Ван-дер-Ваальсовыми, полярными, иногда - взаимной диффузией) в поверхностном слое и характеризуется удельной работой, необходимой для разделения поверхностей. В некоторых случаях адгезия может оказаться сильнее, чем когезия , то есть сцепление внутри однородного материала, в таких случаях при приложении разрывающего усилия происходит когезионный разрыв, то есть разрыв в объёме менее прочного из соприкасающихся материалов.

Адгезия существенно влияет на природу трения соприкасающихся поверхностей: так, при взаимодействии поверхностей с низкой адгезией трение минимально. В качестве примера можно привести политетрафторэтилен (тефлон), который в силу в значения адгезии в сочетании с большинством материалов обладает низким коэффициентом трения. Некоторые вещества со слоистой кристаллической решёткой (графит , дисульфид молибдена), характеризующиеся одновременно низкими значениями адгезии и когезии, применяются в качестве твёрдых смазок.

Наиболее известные адгезионные эффекты - капиллярность , смачиваемость /несмачиваемость, поверхностное натяжение , мениск жидкости в узком капилляре, трение покоя двух абсолютно гладких поверхностей. Критерием адгезии в некоторых случаях может быть время отрыва слоя материала определенного размера от другого материала в ламинарном потоке жидкости.

Адгезия имеет место в процессах склеивания, пайки, сварки, нанесения покрытий. Адгезия матрицы и наполнителя композитов является также одним из важнейших факторов, влияющих на их прочность.

В биологии клеточная адгезия - не просто соединение клеток между собой, а такое их соединение, которое приводит к формированию определённых правильных типов гистологических структур, специфичных для данных типов клеток. Специфичность клеточной адгезии определяется наличием на поверхности клеток белков клеточной адгезии - интегринов, кадгеринов и др. Например, адгезия тромбоцитов на базальной мембране и на коллагеновых волокнах повреждённой сосудистой стенки.

В антикоррозионной защите адгезия лакокрасочного материала к поверхности - наиболее важный параметр, влияющий на долговечность покрытия. Адгезия – прилипание лакокрасочного материала к окрашенной поверхности, одна из основных характеристик промышленных ЛКМ. Адгезия лакокрасочных материалов может иметь механическую, химическую или электромагнитную природу и измеряется силой отрыва лакокрасочного покрытия на единицу площади подложки. Хорошая адгезия лакокрасочного материала к окрашиваемой поверхности может быть обеспечена лишь при тщательной очистке поверхности от грязи , жира, ржавчины и прочих загрязнений. Также для обеспечения адгезии необходимо достичь заданной толщины покрытия, для чего используются толщиномеры мокрого слоя. Для оценки адгезии/когезии приняты и утверждены критерии

Примеры употребления слова адгезия в литературе.

Отрицательные ионы, разгоняясь в циклотроне, приобретают центростремительную тенденцию, то есть стремятся больше к адгезии , чем к рассеиванию.

Вначале синий играет роль пассивного центра адгезии , и в результате формируется агломерат, не имеющий свойств кодона, но активно собирающий те фрагменты информагентов, которые мы условно назвали грязью.

Отвержденные эпоксидные смолы отличаются малой усадкой, высокой адгезией , механической прочностью, влагостойкостью, хорошими электроизоляционными свойствами.

16291 0

Во-первых, давайте предположим, что первое условие для адгезии, соблюдать близкий контакт на молекулярном уровне между адгезивом и субстратом. А теперь представим, что будет происходить после того, как материалы вступят в контакт, и как они будут взаимодействовать. Адгезионная связь может быть механической, физической или химической, но обычно она представляет собой комбинацию этих видов связи.

Механическая адгезия

Простейшим видом адгезии является механическое сцепление компонентов адгезива с поверхностью субстрата. Эта адгезия образуется за счет присутствия таких неровностей поверхности, как углубления, трещины, щели, при развитии которых образуются микроскопические поднутрения.

Основным условием образования механической адгезии является способность адгезива легко проникать в углубления на поверхности субстрата, а затем твердеть. Это условие зависит от смачивания поверхности субстрата адгезивом, которая, в свою очередь, связана с соотношением поверхностных энергий материалов, находящихся в контакте, определяющим величину контактного угла смачивания. Идеальной ситуацией является полное смачивание субстрата адгезивом. Для улучшения контакта перед нанесением адгезива следует избавиться от воздуха или пара, присутствующих в углублениях. Если адгезив сможет заполнить поднутрения и затем затвердеть, то, естественно, он блокируется поднутрениями (Рис. 1.10.7).

Рис. 1.10.7. Механическое зацепление между адгезивом и субстратом на микроскопическом уровне

Степень проникновения адгезива в поднутрения зависит как от давления, которое было приложено при его нанесении, так и от свойств самого адгезива. Если попытаться оторвать адгезив от субстрата, то это можно сделать лишь путем его разрыва, так как адгезив невозможно извлечь из поднутрений. Концепция механической адгезии не противоречит условиям для крепления или ретенции несъемных зубных протезов, используемой при их фиксации, за исключением тех явлений, которые происходят на микроскопическом уровне. Важное отличие между этими концепциями заключается в том, что хорошая смачиваемость не является необходимым условием макроретенции, тогда как она играет определяющую роль в создании механического зацепления на микроскопическом уровне.

В целом, поднутрения часто увеличивают механическую прочность соединения, однако обычно этого недостаточно, чтобы был задействован механизм самой (специфической) адгезии. Существует ряд дополнительных механизмов адгезии, вызванных физическими и химическими причинами. Термин истинная или специфическая адгезия обычно используется для того, чтобы отличить физическую и химическую адгезию от механической, однако от подобных терминов лучше отказаться, поскольку они не совсем точны.

Понятие истинной адгезии предполагает, что кроме нее существует адгезия ложная, однако в действительности адгезия либо существует, либо ее нет. Физическая и химическая отличаются от механической адгезии тем, что первые вовлекают адгезив и субстрат в молекулярное взаимодействие друг с другом, в то время как для механической такое взаимодействие на поверхности раздела двух фаз не требуется.

Физическая адгезия

При близком контакте двух плоскостей образуются вторичные связи за счет диполь-дипольного взаимодействия между поляризованными молекулами. Величина возникших сил притяжения очень невелика, даже если они и обладают высоким значением дипольного момента или повышенной полярностью.

Величина энергии связи зависит от относительной ориентации диполей в двух плоскостях, однако обычно эта величина составляет не более 0,2 электрон-вольта. Это значение намного меньше, чем у первичных связей, таких, как ионные или ковалентные, у которых энергия связи обычно колеблется в пределах от 2,0 до 6,0 электрон-вольт.

Вторичные связи за счет диполь-дипольного взаимодействия возникают очень быстро (поскольку для их возникновения не нужна энергия активации) и являются обратимыми (так как молекулы на поверхности вещества остаются химически незатронутыми). Это слабое адсорбционное физическое притяжение легко разрушается при повышении температуры, и оно не подходит для тех случаев, когда требуется постоянное соединение. Тем не менее, такие связи, как водородная, могут стать важнейшей предпосылкой к образованию химической связи.

Из этого следует, что соединение неполярных жидкостей с полярными твердыми веществами затруднено, и наоборот, поскольку между этими двумя веществами будет отсутствовать взаимодействие на молекулярном уровне, даже при их близком контакте. Такое поведение наблюдается у жидких силиконовых полимеров, которые являются неполярными и поэтому не образуют вторичных связей с твердыми поверхностями. Связи с ними возможны только при прохождении химической реакции сшивания, которая создаст места соединений между жидкостью и твердым телом.

Химическая адгезия

Если после адсорбции на поверхности молекула диссоциирует, и затем ее функциональные группы, каждая в отдельности, смогут соединяться ковалентными или

ионными связями с поверхностью, то в результате образуется прочная адгезионная связь. Такую форму адгезии называют хемосорбцией, и она может быть по своей природе как ионной, так и ковалентной.

Химическая связь отличается от физической тем, что два соседних атома совместно обладают одними и теми же электронами. Поверхность адгезива должна быть прочно соединена с поверхностью субстрата через химические связи, поэтому необходимо присутствие реакционноспособных групп на обеих поверхностях. В частности, это относится к образованию ковалентных связей, что происходит, например, при связывании реакционноспособных изоцианатов с полимерными поверхностями, содержащими гидроксильные и аминные группы (Рис. 1.10.8).

Рис. 1.10.8. Образование ковалентной связи между изоцианатом и гидроксильными и аминными группами на поверхности субстрата

В отличие от неметаллических соединений, между твердым и жидким металлами легко образуется металлическая связь — этот механизм лежит в основе паяния. Металлическая связь возникает за счет свободных электронов и не зависит от присутствия реакционноспособных групп. Однако эта связь возможна только в том случае, если металлические поверхности будут идеально чистыми. На практике это означает, что для удаления оксидных пленок необходимо использовать флюсы, в противном случае эти пленки будут препятствовать контакту между атомами металлов.

Единственным путем отделения адгезива от субстрата является механический разрыв химических связей, однако это не означает, что в первую очередь будут разорваны именно эти, а не другие валентные связи. Это накладывает ограничения на прочность, которую можно достичь в соединении. Если прочность склеивания или адгезионного соединения окажется выше прочности при растяжении материалов адгезива или субстрата, тогда раньше, чем разрушится адгезионное соединение, произойдет разрушении когезионное адгезива или субстрата.

Адгезия переплетением молекул (Диффузионный механизм адгезии)

До сих пор мы исходили из предположения, что между адгезивом и субстратом существует четко выраженная поверхность раздела. Обычно адгезив адсорбируется поверхностью субстрата и может рассматриваться, как поверхностноактивное вещество, которое накапливается на поверхности, но не проникает вглубь. В некоторых же случаях адгезив или один из его компонентов способны проникать внутрь поверхности субстрата, а не накапливаться на ней. Следует подчеркнуть, что абсорбция молекул возникает в результате хорошего смачивания поверхности, а не является его причиной.

Если абсорбированный компонент представляет собой молекулу с длинной цепью, или образует молекулу с длинной цепью после поглощения субстратом, то в результате может произойти переплетение или взаимодиффузия молекул адгезива и субстрата, которое приведет к очень высокой адгезионной прочности (Рис. 1.10.9).

Рис. 1.10.9. Диффузионный переходный слой, образо ванный взаимным переплетением молекулярных фрагментов адгезива и субстрата

Это равенство называется уравнением Дюпре. Оно означает, что работа адгезии (W) является суммой свободных поверхностных энергий твердого тела (у) и жидкости (y|v) за вычетом энергии на поверхности раздела между жидкостью и твердым телом (ysl).

Из уравнения Юнга следует,

Ysv Ysi = Ysi cose

Адгезия будет максимальной при полном (идеальном) смачивании, т.е. в случае, когда cosq = 1, следовательно, энергией склеенных поверхностей и энергиями каждой из этих поверхностей в отдельности (Рис. 1.10.10).

Рис. 1.10.10. Отделение жидкости от твердой поверхности с образованием двух новых поверхностей

Поверхностное натяжение жидкого углеводорода составляет приблизительно 30 мДж/м. Если предположить, что силы притяжения убывают до нуля на расстоянии 3 х 10~ метров, то сила, требуемая для того, чтобы отделить жидкость от твердой поверхности равна работе адгезии, деленной на расстояние, и равна 200 МПа.

Фактически, эта величина значительно выше.

Таким образом, адгезивы должны сильно химически притягиваться поверхностью субстратов для обеспечения высокой адгезионной прочности.

Клиническое значение

Врачу необходимо знать, какой вид связи он стремится получить, а для этого требуется понимание этапов создания адгезионного соединения. Это позволит избежать ошибок в работе.

Основы стоматологического материаловедения
Ричард ван Нурт

Благодаря развитию новых технологий в стоматологии, сегодня мы получили возможность восстанавливать целостность и функциональность поврежденных и разрушенных зубов быстро, качественно и на долгий срок. Адгезивные системы обеспечивают уверенную фиксацию пломб и искусственных протезных конструкций.

В этой статье рассмотрим, что же собой представляет адгезия в стоматологии, и как она работает на службе красивой и здоровой улыбки.

Адгезия – что это такое

Вообще, слово «адгезив» в переводе с английского языка означает «клеящее вещество, прилипание». Этот «клей» используется в стоматологии с тем, чтобы соединять разные по составу материалы с тканью зуба (не путать адгезию и когезию – это физический термин).

Сам по себе пломбировочный материал не обладает химической адгезией, то есть способностью прилипать к влажному по своей природе дентину, так что здесь необходим «посредник», который позаботится о надежном сцеплении двух разнородных тканей. Во время полимеризации композитный материал дает усадку, так что если не использовать адгезивные системы, нужного качества сцепления добиться не удастся. А это прямая дорога к развитию повторного кариеса или даже под пломбой.

«Меня с детских лет беспокоила моя диастема, . Лет 5 назад я услышала, что существует такая методика, как адгезивная реконструкция зубов, при которой никакая болезненная обточка не нужна и материал буквально «прилипает» к зубам. Доктор просто шлифанул эмаль передних зубов и послойно закрыл непривлекательную щербинку композитом. Эмаль осталась целой, а улыбка сделалась открытой».

Елена Сальникова, отзыв на сайте одной из московских стоматологий

Инновационные светоотверждаемые адгезивные системы используются при пломбировке зубов композитами, при фиксации мостов, а также для установки брекетов, виниров, скайсов.

Классификация адгезивных систем

По сути своей состав адгезивной системы представлен группой жидкостей из протравливающего компонента, бонда, а также праймера. Все вместе они обеспечивают микромеханические связки между искусственными материалами и тканями зуба.

Поскольку структура эмали и дентина неоднородны, то и адгезивные системы для них используются тоже разные. В классификации адгезивных систем выделяют варианты отдельно для эмали и отдельно для дентина.

Современные адгезивные системы различаются по следующим характеристикам:

  • число компонентов, которые входят в их состав (1, 2 и больше),
  • содержание наполнителя: если присутствует кислота, то это самопротравливающая адгезивная система,
  • способ отверждения: самостоятельно отверждаемые, с использованием света, а также двойного отверждения.

Так, в составе эмалевых адгезивов – низковязкие мономеры композиционных материалов. Важный момент состоит в том, что эмалевые адгезивы не работают в отношении дентина. Потому важно или ставить изолирующие прокладки для твердой части зуба, или применять специальный дентинный адгезив – праймер.

Какие есть типы адгезии

Существует несколько видов адгезии: механическая, химическая, а также их комбинации. Самым простым является механический. Суть действия системы сводится к созданию микромеханических связок между компонентами материала и шероховатой поверхностью зуба. Чтобы обеспечить высокое качество сцепления, перед нанесением адгезива естественные микроуглубления на поверхности зубных тканей тщательно высушивают.

Интересно! Доктор Буонкоре 63 года назад опытным путем выяснил, что фосфорная кислота делает зубную эмаль шероховатой. Это помогает усилению сцепления композита с тканями зуба. Появившаяся более полувека назад методика протравки зубной эмали кислотой стала фундаментом для современных адгезивных реставрационных методов.

Химический вариант сцепления основан на химической связи композитного материала с эмалью и дентином. Таким типом адгезии обладают исключительно стеклоиномерные цементы. Прочие материалы, что используют стоматологи, имеют только механическую адгезию.

Как «прилипает» композит к поверхности эмали

Как уже отмечалось выше, что в стоматологии механизмы адгезии с эмалью и дентином разнятся. Защитная внешняя оболочка зубов преобразуется под влиянием кислот. Если рассматривать эмаль после травления кислотой под микроскопом, то она будет напоминать собой пчелиные соты. Кислота в данном случае работает на усиление связки с композитом. В результате вязкие гидрофобные адгезивы легче проникают в более глубокие слои эмали и обеспечивают ее прочное сцепление с композитом.

Интересно! Эмаль считается наиболее твердой тканью в нашем организме. Она содержит в себе самое большое количество неорганических веществ – примерно 97%. Оставшиеся 2% – это вода, 1% – органика.

Как травят эмаль

Данный способ обработки подразумевает удаление с эмали части слоя в 10 микроньютонов (мкН). В результате на ее поверхности появляются поры глубиной в 5 – 50 мкН. Нередко для протравки эмаль смазывают ортофосфорной кислотой, а вот для дентина можно использовать органические кислоты, но в слабой концентрации.

Процесс травления длится от 30 до 60 секунд. Решающее значение имеют индивидуальные особенности строения эмалевой поверхности, в частности ее изначальная пористость. Если передержать кислоту, это неизбежно скажется на структуре эмали и ослабит сцепление. Так что если зубные ткани у пациента довольно слабые, то протравка должна длиться не дольше 15 секунд. Кислота удаляется струей воды, причем столько же по времени, сколько ее держат на эмали.

Как «прилипает» композит к поверхности дентина

Свойства дентина таковы, что его наружный слой – влажный. Жидкость в этой части зуба обновляется быстро, так что высушить ее очень сложно. И чтобы влага не сказалась на качестве сцепления дентина с композитом, используются особые водосовместимые (по-научному – гидрофильные) системы. Также на прочность связей непосредственное влияние оказывает так называемый «смазанный слой», который возникает как следствие инструментальной обработки дентина. Существует 2 подхода к использованию механизмов связывания:

  • смазанный слой пропитывают водосовместимыми веществами,
  • смазанный слой искусственно растворяют и счищают.

Стоит заметить, что последний метод, предполагающий удаление лишних микрочастиц с поверхности эмали, сегодня применяется значительно чаще, чем первый.

Как травят дентин

Японский стоматолог Фузаяма 39 лет назад первым в истории применил методику протравливания дентина. Сегодня перед процедурой на ткани зубов наносят специальные кондиционеры – они помогают гидрофильным веществам глубже проникать в дентинные ткани и сцепляться с водоотталкивающим композитом. Смазанный слой при этом отчасти уходит, происходит раскрытие дентинных канальцев, а из верхнего слоя выходят минеральные соли. После этого кондиционеры смываются водой. Следом идет этап сушки, и с этим главное не переусердствовать, иначе это скажется на сцеплении.

Далее наносится праймер, который помогает гидрофильным веществам пройти в канальцы и сцепиться с коллагеновыми волокнами. В итоге образуется своего рода гибридный слой, который способствует эффективному скреплению композита с дентином. Он также служит барьером от просачивания химии и микробов во внутренние структуры зуба.

Адгезивные системы для эмали

Если речь идет об эмали, то адгезия здесь обеспечивается на основе микромеханической сцепки. Для этого используются гидрофобные жидкости, однако необходимого «прилипания» к влажному дентину они не дадут, поэтому также используется праймер. Обращение с эмалевыми адгезивами, имеющими однокомпонентный состав, строится на следующих этапах:

  1. протравка эмали ортофосфорной кислотой – примерно полминуты,
  2. удаление водяной струей травильного геля,
  3. сушка эмали,
  4. соединение в одинаковой пропорции веществ адгезивной системы,
  5. введение аппликатором в полость зуба адгезива,
  6. разравнивание его воздушной струей.

Только после выполнения всех выше перечисленных манипуляций врач осуществляет введение композитного материала.

Адгезивные системы разных поколений в клинической стоматологии

К настоящему моменту известно 7 поколений адгезивных систем. Сегодня в ходу у стоматологов системы, начиная с 4-го поколения, которые помогают нам сохранять зубы целыми и здоровыми на протяжении всей жизни. Они содержат 3 компонента: кондиционер + праймер + адгезив. А вот инновационные 6 и 7 поколения с одноэтапными препаратами, увы, еще не приобрели повсеместного распространения.

Интересно, что многие эксперты говорят о первостепенной роли эмалевой адгезии, а вот дентинная идет во вторую очередь. Проведенные лабораторные исследования также указывают на то, что сегодня максимальную эффективность демонстрирует спиртовой протокол адгезии. Этанол помогает устранить боль и чувствительность после проведенной процедуры. К тому же при использовании этого вида протокола адгезии происходит меньшая утечка дентинной жидкости. Впрочем, в каждой индивидуальной ситуации врач решает сам, какому протоколу и какой адгезивной системе отдать предпочтение в имеющихся клинических условиях .

1 Протоколы использования адгезивов Попова А.О., Игнатова В.А. – студентки 4 курса стоматологического факультета.

Адгезия цемента к различным основам (поверхностям), является важной технической характеристикой определяющей следующие возможности. В частности: способность цемента удерживать элементы наполнителя бетона, способность цементной штукатурки «прилипать» и длительное время удерживаться на поверхностях стен выполненных из разных материалов.

Также это способность клея на основе цемента «приклеивать» отделочные и теплоизоляционные материалы (искусственный камень, керамическую плитку, пенополистирол, базальтовую вату и пр.) к кирпичу, бетону, пеноблоку, древесине и другим основам.

Технический смысл адгезии

Слово «Адгезия» в переводе с латинского означает – «прилипание». Имеется ввиду прилипание разнородных или однородных материалов друг к другу. В нашем случае рассматривается «прилипание» растворов на основе цемента: бетон, штукатурка, кладочный раствор, ремонтные составы, клей, другой строительный материал.

Существует три вида адгезии:

  • Физическая. Прилипание происходит на молекулярном уровне. Пример – прилипание магнита к стальной основе.
  • Химическая. Прилипание происходит на атомном уровне. Пример – сваривание и пайка деталей. Также химический смысл имеет адгезия стоматологической пломбы к пульпе зуба.
  • Механическая. Сцепление материалов происходит за счет проникновения адгезива (штукатурка, бетонный раствор, кладочный раствор, клей и т.п.) в поры и шероховатости основы. Пример: оштукатуривание, укладка плитки, окрашивание.

Степень адгезии измеряется в МПа. Цифровое значение обозначает величину силы, которую необходимо приложить для того чтобы оторвать адгезив от основания. Например, на упаковке сухой штукатурной смеси «ЭКО 44» указывается, что минимальная адгезия данного материала к основе составляет 0,5 МПа. Это значит что для того чтобы оторвать слой адгезива от основы понадобиться приложить усилие 5 кг на 1 см2 площади.

Степень адгезии материала к основе разнится от вида и возраста основы. Например старый бетон имеет степень адгезии к новому бетону от 0,9 до 1,0 МПа, в то время как современные сухие строительные смеси способны обеспечивать степень «прилипания» до 2 МПа и более.

Лабораторное испытание степени адгезии сухих строительных смесей осуществляют на специальных образцах, в соответствии с требованиями ГОСТ 31356-2007.

Способы увеличения адгезии

Степень «прилипания» адгезива к основе есть величина «переменная», зависящая от ряда факторов:

  • Чистоты поверхности от загрязнений: пыли, жирных пятен, аморфных масс и пр.
  • Шероховатости поверхности. Например, в силу практически нулевой шероховатости поверхности, величина адгезия цемента к стеклу значительно ниже, чем адгезия цемента к дереву или адгезия цемента к бетону.
  • Усадочные процессы. При усадке адгезива возникают напряжения вызывающие растрескивания и отслоения от основы.

Чтобы получить величину адгезии соответствующей заданным параметрам, необходимо устранить указанные выше факторы. Применяют следующий комплекс мер:

  • Тщательная очистка основы от загрязнений, краски, старой штукатурки и аморфных масс.
  • Увеличение степени шероховатости методом нанесения насечек или шлифовки абразивами. Хороший результат дает обработка гладкой поверхности составом для увеличения шероховатости поверхности «Бетоноконтакт».
  • Применение химического модифицирования бетона специальными добавками, такими как «МС-АДГЕЗИВ» или «SikaLatex®». «МС-АДГЕЗИВ» значительно увеличивает адгезию цементных растворов, в том числе адгезию цемента к металлу и адгезию цемента к краске. Добавка вводится одновременно с затворителем в соответствии с инструкцией по применению. «SikaLatex®» жидкая добавка в цементные растворы улучшающая прочность сцепления, снижающая усадочные процессы. Вводится в затворитель согласно инструкции. С помощью данных добавок получают цемент с высокой адгезией, даже к старому или «гладкому» основанию.
  • Грунтовка основы. Грунтовки глубоко проникают в толщу основы и значительно увеличивают степень сцепления основы с адгезивом. Распространенные бренды: Люксорит-Грунт, Joint Primer, Максбонд Латекс.

Как показывает практика, в частном строительстве применяют не весь комплекс мероприятий, а только некоторые пункты – очистку поверхности и увеличение степени шероховатости. Выполнение этих операций не требуют дополнительных затрат и обеспечивают достаточную степень сцепления при всех видах работ: штукатурке, укладке плитки, отделке пола и т.п.

Методы измерения величины адгезии

Числовое значение степени сцепления основы с адгезивом определяется специальным прибором «ОНИКС-АП» или его аналогами. Техническая суть технологии заключается в приклеивании рабочей пластины прибора на участок штукатурки, плитки, керамогранита и пр. При этом проверяемый участок должен соответствовать габаритам пластины. Соответствие габаритам пластины обеспечивается пропилами адгезива до основания.

Далее прибор начинает нагружать (отрывать) пластину, пока полностью не оторвет ее от основания вместе с испытуемым участком адгезива. По ходу процесса происходит индикация нарастания величины нагрузки. С помощью данного прибора можно измерять степень адгезии от 0 до 10 МПа. Учитывая высокую стоимость данного прибора, около 70 000 рублей, приобретать его для разового использования в частном строительстве экономически нецелесообразно.

Заключение

Производители строительных материалов и торговые сети предлагают потребителям широкий выбор сухих строительных смесей «на все варианты»: штукатурки для наружных и внутренних работ, клеи на основе цемента для плитки, керамогранита, искусственного камня, пенополистирола и других теплоизоляционных и отделочных материалов.

При этом адгезия той или иной смеси соответствует своему назначению при соблюдении инструкции по использованию. Поэтому, если застройщики, используя данные составы, четко придерживаются требований производителя, им не стоит беспокоиться и адгезии – величина адгезии обеспечивается автоматически.

Просмотров