Технология никелирования в домашних условиях. Способы выполнения никелирования в домашних условиях Никелирование металла в домашних условиях

Наибольшее распространение нашли химические покрытия никелем, медью, серебром, палладием, кобальтом и реже оловом, хромом и другими металлами.

Химическое никелирование. Восстановление ионов никеля из растворов происходит за счет окисления гипофосфита по суммарной реакции

H 2 PO - 2 +H 2 O + Ni 2+ = H 2 PO - 3 + 2Н + + Ni.

При этом восстановление может протекать следующим образом:

NiCl 2 + NaH 2 PO 2 + H 2 O = Ni + 2HCl + NaH 2 PO 3

NaH 2 PO 3 + Н 2 O = NaH 2 PO 3 + Н 2

или Н 2 РO - 2 = РO - 2 + 2Н +

(разложение гипофосфита)

Ni 2+ +2H = Ni + 2H +

(восстановление никеля).

Выделяющийся водород восстанавливает также фосфит до фосфора, поэтому никелевое покрытие содержит 6 — 8% фосфора, который во многом определяет его специфические свойства (табл. 24).

24. Свойства химического и гальванического покрытия никелем

Несмотря на то, что никель, осажденный химическим способом, обладает значительной коррозионной стойкостью, он не может быть применен для защиты от коррозии в среде азотной и серной кислот. После термической обработки такой никель имеет твердость HV 1000-1025.

В основном технологический процесс никелирования сводится к следующему. Детали из стали, меди и ее сплавов подготовляют так же, как и под гальванические покрытия.

Никелирование ведут в растворе следующего состава (г/л):

Никель сернокислый 20

Гипофосфит натрия 25

Натрий уксуснокислый 10

Тиомочевина (или малеиновый ангидрид) 0,003 (1,5 — 2)

Температура 93 ± 5°С, скорость осаждения 18 мкм/ч (при 90°С и плотности загрузки 1 дм 2 /л), рН = 4,1 ÷ 4,3.

Детали в процессе никелирования необходимо встряхивать. Допускается замена тиомочевины малеиновым ангидридом в количестве 1,5 — 2 г/л.

Для инициирования осаждения никеля на деталях из меди и ее сплавов необходимо обеспечить их контакт со сталью или алюминием. Процесс ведут в фарфоровых емкостях или стальных, футерованных полиэтиленовой пленкой, а также в емкостях из силикатного стекла.

При скоростном осаждении и при большой плотности загрузки деталей несложного профиля рекомендуется применять раствор следующего состава (в г/л):

Никель сернокислый 60

Гипофосфит натрия 25

Натрий уксуснокислый 12

Кислота борная 8

Аммоний хлористый 6

Тиомочевина 0,003

Температура раствора 93 ± 5°С, скорость осаждения 18 мкм/ч (при 90°С и плотности загрузки 3 дм 2 /л), рН = 5,6 ÷ 5,7.

После химического никелирования детали промывают в уловителе, затем в проточной холодной и горячей воде, сушат при 90 ± 10°С в течение 5 — 10 мин и термически обрабатывают при 210 ± 10°С в течение 2 ч (с целью снятия внутренних напряжений и повышения прочности сцепления с основой). Далее в зависимости от условий эксплуатации детали покрывают лаком, обрабатывают гидрофобной жидкостью (ГКЖ и др.) или без обработки подают на сборку.

Основными причинами некачественного покрытия при химическом никелировании являются:

1) самопроизвольное осаждение никеля в виде черных точек из-за плохой очистки ванн, наличия следов никеля или других очагов кристаллизации на дне и стенках ванны, а также из-за перегрева раствора;

2) наличие непокрытых мест на деталях сложной конфигурации из-за образования газовых пузырей и неравномерного омывания деталей раствором;

3) частичное отложение никеля на внутренней поверхности ванны из-за касания деталями стенок или дна ванны в процессе никелирования;

4) снижение кислотности раствора (растрескивающееся, хрупкое покрытие);

5) увеличение кислотности раствора (покрытие грубое и шероховатое).

Значение рН корректируют, добавляя 10%-ный раствор уксусной кислоты или едкого натра.

Детали из кремния никелируют в щелочных растворах следующего состава (в г/л):

Хлорид никеля 30

Гипофосфит натрия 10

Цитрат натрия 100

Хлорид аммония 50

Скорость осаждения 8 мкм/ч, рН = 8÷10 (за счет введения NH 4 OH).

Порядок химического никелирования керамики: обезжиривание в щелочных растворах и химическое растравливание поверхности (смесь серной и плавиковой кислот), сенсибилизация в растворе (150 г/л) гипофосфита натрия при 90°С, никелирование в щелочной ванне. Толщина покрытий деталей в зависимости от условий их эксплуатации указана в табл. 25.

25. Значения толщины покрытий в зависимости от условий эксплуатации

Так, при рН = 5,5 в осадках содержится 7,5% фосфора, а при рН = 3,5 14,6%. Повышение твердости покрытия до 1100-1200 кгс/мм 2 при 200-300°С вызывается выделением фазы Ni 3 P, которая кристаллизуется в тетрагональной системе с постоянной кристаллической решетки а = b = 8,954. 10 -10 м и с=4,384.10 -10 м. Максимум твердости никеля соответствует 750°С. Модуль упругости при этом составляет 19000 кгс/мм 2 . Предел прочности при растяжении равен 45 кгс/мм 2 (при 20°С) и 55 кгс/мм 2 после термообработки при 200°С в течение 1 ч. Коэффициент трения покрытия (при нагрузке > 10 кгс) после его нанесения такой же, как и блестящего хрома. Удельный износ никелевого покрытия при 100°С составляет 2.10 -3 мм 3 /м.

При перемешивании кислого раствора увеличивается блеск осадков и скорость осаждения. Если процесс осаждения прерывается на несколько минут, то детали можно загружать в ванну без дополнительного активирования. При длительном перерыве (24 ч) детали следует хранить в холодном растворе никелирования, а затем переносить в рабочую ванну.

Скорость осаждения металла тем меньше, чем ниже рН раствора. Кроме того, скорость является функцией отношения Ni 2+ : Н 2 РО - 2 . Для нормальной кислой ванны оно должно колебаться в пределах 0,25 — 0,60 (для буферированной ацетатом 0,3—0,4).

При наличии солей аммония уменьшается скорость осаждения. Во вновь приготовленных растворах скорость осаждения сначала высокая, а затем по мере старения падает. Так, в ацетатных и цитратных растворах она уменьшается с 25 до 2 — 5 мкм/ч. Наиболее оптимальная скорость осаждения ~ 10 мкм/ч.

Блеск покрытия определяется качеством подготовки поверхности основы, которую следует полировать. В щелочных ваннах покрытия получается более блестящими, чем в кислых. Покрытия, содержащие <= 2% фосфора — матовые, 5% фосфора — полублестящие и => 10% фосфора — очень блестящие, но с желтоватым оттенком. Разброс по толщине покрытия 30 мкм даже на деталях сложной конфигурации составляет, например, не более 1—2 мкм. Когда ванна работает при постоянном значении рН, количество фосфора в покрытии пропорционально концентрации гипофосфита в ванне.

Нормальное содержание фосфора в покрытии 5 — 6%. Содержание фосфора тем выше, чем больше отношение H 2 PO 2:Ni 2+ . На низкоуглеродистых сталях адгезия никелевых покрытий очень высокая (2200 — 4400 кгс/см 2), но ухудшается, если температура раствора понижается до 75°С. Адгезия на сталях, легированных Al, Be, Ti, и сплавах на основе меди зависит от способа обработки поверхности и улучшается последующей термообработкой при 150-210°С.

Первым признаком нарушения стабильности состава раствора является образование белой пены вследствие чрезмерного выделения водорода во всем объеме ванны. Затем появляется очень мелкая черная взвесь Ni-P, которая ускоряет реакцию разложения раствора.

Причинами преждевременного разложения раствора могут быть: слишком быстрое введение щелочи и гипофосфита (следует добавить разбавленного водного раствора при интенсивном перемешивании); локальный перегрев; слишком высокое содержание гипофосфита (нужно понизить рН и температуру); внесение палладия в раствор с деталями, активированными в PdCl 2 , неправильное соотношение суммарной площади деталей к объему раствора.

Уровень раствора в ванне необходимо поддерживать постоянным, так как понижение его за счет испарения приводит к концентрированию раствора. В процессе покрытия деталей не следует допускать отключения нагревателей (пар, теплоэлектронагрев и др.).

В отличие от гидрозина, гипофосфит натрия обладает важным преимуществом, так как в осадке содержится в 8 — 10 раз меньше газов. Добавка тиосульфата натрия способствует снижению пористости никеля. Так, при толщине 20 мкм она снижается от 10 до 2 пор/см 2 . При выборе материала для ванны следует учитывать, что растворы испаряются при температуре, приблизительно равной температуре кипения, и имеют высокую чувствительность к различным загрязнениям. Кроме того, материал должен быть стойким к HNO 3 , так как периодически со стенок ванны приходится удалять осадки никеля. Ванны объемом 20 л изготовляют из пирекса, а большего — из полированной керамики. Внутреннюю поверхность стальных емкостей покрывают стекловидной эмалью. Ванны из коррозионно-стойкой стали необходимо пассивировать концентрированной азотной кислотой в течение нескольких часов. Для предотвращения возникновения гальванопар между стальной ванной и покрываемыми деталями ее стенки необходимо футеровать стеклом или резиной. В качестве футеровки в ваннах малой емкости используют полиэтиленовые вкладыши.

После каждой выгрузки деталей электрические нагреватели стержневого типа необходимо протравливать в HNO 3 .

Дефектные покрытия с деталей из стали, алюминия и титана следует удалять в концентрированной азотной кислоте при температуре не выше 35°С, с деталей из коррозионно-стойких сталей в 25%-ном растворе HNO 3 , а с латунных и медных — анодным растворением в H 2 SO 4 .

С целью улучшения стабильности состава раствора зарубежные фирмы рекомендуют добавлять соли хрома. Пористость покрытий, полученных в растворе, содержащем 10 г/л K 3 Fe(CN) 6 и 20 г/л NaCl, определяют в течение 10 мин. Поры совершенно отсутствуют при толщине покрытия => 100 мкм.

В процессе эксплуатации материалы подвержены физическому износу. Для восстановления свойств металла используют многочисленные способы защиты. Одним из самых эффективных методов защиты является никелирование материалов.

Для нанесения никеля в домашних условиях используют способы химического и электролитического никелирования.

Что называют никелированием

Никелированием называют процесс нанесения тонкого никелевого покрытия на поверхность материала. Никелевый слой принимают равным 1–50 мкм.

Слой никеля используется для повышения антикоррозийных и износостойких свойств материалов. Довольно часто такое покрытие имеет защитно-декоративное значение.

Никелирование используется для обработки стали и сплавов цветных металлов. Тонкий слой никеля используется для защиты изделий из марганца, титана, вольфрама, молибдена и сплавов на их основе.

Разработаны и успешно внедрены способы нанесения никелевого защитного покрытия на керамику, пластик, фарфор, стекло и другие неметаллические поверхности.

Виды никелирования

Никелирование в простых домашних условиях проводят двумя способами:

  • электролитическим;
  • химическим.

Выбор способа зависит от структуры и формы материала.

При электролитическом способе используются вещества, частично или полностью состоящие из ионов и обладающие ионной проводимостью. Никелевое покрытие наносят за счет электрохимических свойств этих веществ. Наибольшее распространение получили электролиты сернокислого натрия и хрома.

В зависимости от степени отражения покрытия различают никелирование:

Функции электролитического никелирования

  • матовое;
  • блестящее.

Для нанесения матового покрытия используются электролиты без добавок. Изделия с матовым оттенком не имеют металлического блеска.

Блестящее никелирование получают путем добавления в электролит специальных блескообразователей на основе хлорамина, пропаргилового спирта, бепзосульфамида и других окислителей.

Наилучшая защита никелевого покрытия достигается при минимальной пористости защитного слоя. С этой целью производят его омеднение либо используют многослойную структуру материала.

К сведению. При одинаковой толщине многослойные покрытия в несколько раз надёжнее однослойных материалов.

Наиболее распространёнными примерами многослойных материалов являются медно-никелево-хромовые покрытия.

Основными недостатками электролитического никелирования являются:

  • высокая степень пористости;
  • неравномерность осаждения никеля;
  • сложность обработки поверхностей со сложной формой.

Основой метода служит свойство ионов никеля восстанавливаться в жидкой среде. С этой целью используют гипофосфит натрия или другие химические реактивы. Химический способ позволяет обрабатывать изделия со сложной формой поверхности.

Недостатком способа является относительная дороговизна сухих реактивов, используемых для приготовления водных химических растворов.

Проведение электролитического никелирования дома

Электролитическое (гальваническое) никелирование деталей проводят двумя способами:

  • погружением деталей в электролит;
  • без погружения деталей в электролит.

Первый способ используют при обработке небольших по размеру деталей. Второй способ используют при обработке больших и тяжелых предметов.

Перед никелированием выполняют процесс омеднения металла.

Метод с погружением в электролит

По первому способу поверхность изделия шлифуют наждачной бумагой для снятия оксидной пленки. Затем образец промывают в теплой воде. После этого его обрабатывают содовым раствором и вновь промывают в теплой чистой воде.

Затем в стеклянную или фарфоровую посуду помещают две тонкие медные пластины. Пластины играют роль анодов. Их ставят в вертикальном положении, параллельно друг другу.

Изделие помещают между этими двумя пластинами. Для этого образец подвешивают с помощью проволоки. Проволоку обоими концами прикрепляют к пластинам.

В посуду добавляют водный раствор электролита со следующим составом:

  • дистиллированная вода;
  • 20%-ный медный купорос;
  • 2%-ная серная кислота.

Медные пластины подключают к источнику электроснабжения. Величину напряжения определяют из расчета 15–20 мА на 1 см2 поверхности материала.

К сведению. Никелевый электролит чувствителен к изменениям кислотности. Для поддержания уровня кислотности используют буферные соединения на основе борной кислоты.

В растворе электролита хлорид меди диссоциирует (распадается) на составляющие компоненты. Ионы смещаются к катоду и превращаются в нейтральные атомы. Ионы хлора окисляются у анода.

При пропускании тока через электролит ионы меди переходят в раствор. Из раствора медь оседает на катоде в виде нейтральных атомов. Примеси остаются на дне посуды. Чистота полученной меди составляет почти 100%.

Через 30 минут на детали образуется тонкий слой меди. Воздействие электрического тока вызывает увеличение толщины медного слоя. Чем больше толщина слоя, тем меньшее количество пор остается на обрабатываемой поверхности.

Метод без погружения деталей в электролит

Гальваническое никелирование больших по размеру деталей производят без погружения их в электролит. Для этого используют кисточку из распущенных медных проволок. В качестве кисточки часто используют очищенный от изоляции многожильный медный кабель.

Увеличением напыляемого медного слоя добиваются устранения пористости поверхности образца.

Процесс осаждения никеля проводят аналогично процессу омеднения поверхности. Для этого в емкость добавляют электролит. В состав электролита входят следующие химические реагенты, г/л:

  • раствор сернокислого натрия – 310;
  • раствор хлористого никеля – 65;
  • ортоборная кислота – 45;
  • 1,4-бутандиол – 0,15;
  • орто-сульфобензимид (сахарин) – 2,0;
  • каолин (известь) – 1,0.

В электролит опускают тонкие никелевые пластины. Они играют роль анодов. Между ними помещают изделие. Концы пластин подключают к клемме источника питания с положительным зарядом. Корпус детали присоединяют к отрицательному полюсу.

Для регулирования величины тока используют реостат. Контроль величины подаваемого электрического тока проводят с помощью миллиамперметра. Величина подаваемого тока не должна превышать 6 В. Осаждение никеля проводят при температуре около 50°С и плотности электротока 4–5 А/ дм2. Продолжительность процесса – 3 мин.

К сведению. Никелевое покрытие без подложки имеет довольно слабое сцепление с поверхностью. С целью повышения адгезии используют термическую обработку изделия при температуре 450 градусов.

Завершающий этап обработки детали

Обработанную деталь промывают под потоком чистой теплой воды и подвергают сушке.

Никелированное покрытие обладает матовым оттенком. Для придания блеска деталь полируют.

Никелевые покрытия с дефектами удаляют с помощью анодного растворения в электролите. Для этого в состав электролита включают серную кислоту. Химическую плотность кислоты принимают равной 1,2-2,8 кг/м3. Процесс снятия слоя никеля проводят при температуре 20-25° С и анодной плотности электротока 5 А/дм2.

Проведение химического никелирования дома

Химический способ никелирования в домашних условиях проводят с помощью рабочих растворов. В зависимости от количества сухих реагентов, скорость увеличения никелевого слоя составляет 80 мкм/ч и более.

В состав рабочего раствора входят следующие реагенты, г/л:

  • никелевый купорос (порошок сернокислого никеля) – 20;
  • галенит (порошок сульфида свинца) – 20;
  • ацетат натрия – 15;
  • раствор гипофосфита натрия – 25.

Рабочая температура химического раствора– 90°С. При удалении свинцового реагента скорость реакции снижается до 50 мкм/ч и менее.

При достижении рабочей температуры, в емкость с раствором опускают обрабатываемую деталь. Перед проведением никелирования покрытие очищают и обезжиривают.

Изделие выдерживают в рабочем растворе на протяжении 1 часа. По мере испарения добавляют дистиллированную воду.

По завершении процесса деталь вынимают и промывают в теплой воде. После ополаскивания изделие подвергают тщательной сушке. При необходимости тщательно полируют.

Увеличение срока службы никелевого покрытия

Никелевое покрытие может быть подвержено сплошной поверхностной коррозии. Процесс коррозии проявляется только в начальный период. По мере увеличения температуры рабочего раствора, поверхностная коррозия проникает вглубь материала. Затем этот процесс замедляется и полностью прекращается.

Для увеличения срока службы никелевого покрытия используют технологию омеднения. Омеднение позволяет устранить и незначительные дефекты поверхности. Нанесение меди в качестве подложки обеспечивает надежность и долговечность никелевой защиты.

Пористость медного покрытия вызывает разрушение защитного слоя и уменьшает срок службы готового изделия. Металл подложки подвергается коррозии с последующим отслаиванием защитного слоя.

Чаще всего процессам коррозии подвергаются изделия с однослойным защитным покрытием. Многослойные детали подвергаются воздействию вредных факторов в меньшей степени.

Для защиты изделий от повреждения проводят ряд дополнительных мероприятий. Используют специальные добавки, которыми закрывают поры.

К сведению. Для предотвращения потери твердости никелирование стали проводят при температуре 250-300ºС.

Дополнительная обработка деталей для продления срока службы

Никелирование на дому проводят с использованием следующих способов:

  • Сухой реактив оксида магния смешивают с водой до кашеобразного состояния. Полученной массой тщательно обрабатывают деталь и погружают ее на несколько минут в 50%-ную соляную либо серную кислоту.
  • Рабочую поверхность протирают проникающей смазкой. Затем изделие погружают в очищенный рыбий жир. Излишки жира через сутки удаляют с помощью бензина или других растворителей.
  • Большие по размеру детали обрабатывают рыбьим жиром за два прохода. Промежуток между обработками должен составлять не менее 12 часов. Через два дня излишки рабьего жира удаляют.

Использование сплавов никеля с другими металлами способно улучшить физико-химические свойства никеля.

Алюминий способствует повышению электрического сопротивления и коррозионной стойкости никеля.

Вольфрам, молибден и титан увеличивают его термостойкость.

Добавление хрома приводит к повышению стойкости никелевого покрытия в окислительных и восстановительных растворах.

Медь увеличивает сопротивляемость никеля действию различных кислот.

Химическое покрытие одних металлов другими подкупает простотой технологического процесса. Действительно, если, например, необходимо химически отникелировать какую-либо стальную деталь, достаточно иметь подходящую эмалированную посуду, источник нагрева (газовая плита, примус и т.п.) и относительно недефицитные химреактивы. Час-другой - и деталь покрыта блестящим слоем никеля.

Заметим, что только с помощью химического никелирования можно надежно отникелировать детали сложного профиля, внутренние полости (трубы и т.п.). Правда, химическое никелирование (и некоторые другие подобные процессы) не лишено и недостатков. Основной из них - не слишком крепкое сцепление никелевой пленки с основным металлом. Однако этот недостаток устраним, для этого применяют так называемый метод низкотемпературной диффузии. Он позволяет значительно повысить сцепление никелевой пленки с основным металлом. Метод этот применим для всех химических покрытий одних металлов другими.

В основу процесса химического никелирования положена реакция восстановления никеля из водных растворов его солей с помощью гипофосфита натрия и некоторых других химреактивов.

Никелирование

Никелевые покрытия, полученные химическим путем, имеют аморфную структуру. Наличие в никеле фосфора делает пленку близкой по твердости пленке хрома. К сожалению, сцепление пленки никеля с основным металлом сравнительно низкое. Термическая обработка пленок никеля (низкотемпературная диффузия) заключается в нагреве отникелированных деталей до температуры 400°С и выдержке их при этой температуре в течение 1 ч.

Если покрываемые никелем детали закалены (пружины, ножи, рыболовные крючки и т.п.), то при температуре 40°С они могут отпуститься, то есть потерять свое основное качество - твердость. В этом случае низкотемпературную диффузию проводят при температуре 270...300 С с выдержкой до 3 ч. При этом термообработка повышает и твердость никелевого покрытия.

Все перечисленные достоинства химического никелирования не ускользнули от внимания технологов. Они нашли им практическое применение (кроме использования декоративных и антикоррозионных свойств). Так, с помощью химического никелирования осуществляется ремонт осей различных механизмов, червяков резьбонарезных станков и т.д.

В домашних условиях с помощью никелирования (конечно, химического!) можно отремонтировать детали различных бытовых устройств. Технология здесь предельно проста. Например, сносилась ось какого-либо устройства. Тогда наращивают (с избытком) слой никеля на поврежденном месте. Затем рабочий участок оси полируют, доводя его до нужного размера.

Надо отметить, что с помощью химического никелирования нельзя покрывать такие металлы, как олово, свинец, кадмий, цинк, висмут и сурьму.

Растворы, применяемые для химического никелирования, подразделяются на кислые (pH - 4...6,5) и щелочные (pH - выше 6,5). Кислые растворы предпочтительнее применять для покрытия черных металлов, меди и латуни. Щелочные - для нержавеющих сталей.

Кислые растворы (по сравнению с щелочными) на полированной детали дают более гладкую (зеркальную) поверхность, у них меньшая пористость, скорость протекания процесса выше. Еще немаловажная особенность кислых растворов: у них меньше вероятность саморазряда при превышении рабочей температуры. (Саморазряд - мгновенное выпадение никеля в раствор с расплескиванием последнего.)

У щелочных растворов основное преимущество - более надежное сцепление никелевой пленки с основным металлом.

И последнее. Воду для никелирования (и при нанесении других покрытий) берут дистиллированную (можно использовать конденсат из бытовых холодильников). Химреактивы подойдут как минимум чистые (обозначение на этикетке - Ч).

Перед покрытием деталей любой металлической пленкой необходимо провести специальную подготовку их поверхности.

Подготовка всех металлов и сплавов заключается в следующем. Обработанную деталь обезжиривают в одном из водных растворов, а затем деталь декапируют в одном из нижеперечисленных растворов.

Составы растворов для декапирования (г/л)

Для стали

    Серная кислота - 30...50. Температура раствора - 20°С, время обработки - 20...60 с.

    Соляная кислота - 20...45. Температура раствора - 20°С, время обработки - 15...40 с.

    Серная кислота - 50...80, соляная кислота - 20...30. Температура раствора - 20°С, время обработки - 8...10с.

Для меди и ее сплавов

    Серная кислота - 5%-ный раствор. Температура - 20°С, время обработки - 20 с.

Для алюминия и его сплавов

    Азотная кислота. (Внимание, 10...15%-ный раствор.). Температура раствора - 20°С, время обработки - 5... 15 с.

Учтите, что для алюминия и его сплавов перед химическим никелированием проводят еще одну обработку - так называемую цинкатную. Ниже приведены растворы для цинкатной обработки.

Составы растворов для цинкатной обработки (г/л)

Для алюминия

    Едкий натр - 250, окись цинка - 55. Температура раствора - 20°С, время обработки - 3...5 с.

    Едкий натр - 120, сернокислый цинк - 40. Температура раствора - 20°С, время обработки - 1,5...2 мин.

При подготовке обоих растворов сначала отдельно в половине воды растворяют едкий натр, в другой половине - цинковую составляющую. Затем оба раствора сливают вместе.

Для литейных алюминиевых сплавов

    Едкий натр - 10, окись цинка - 5, сегнетова соль (кристаллогидрат) - 10. Температура раствора - 20°С, время обработки - 2 мин.

Для деформируемых алюминиевых сплавов

    Хлорное железо (кристаллогидрат) - 1, едкий натр - 525, окись цинка 100, сегнетова соль - 10. Температура раствора - 25°С, время обработки - 30...60 с.

После цинкатной обработки детали промывают в воде и завешивают их в раствор для никелирования.

Все растворы для никелирования универсальны, то есть годны для всех металлов (хотя есть и некоторая специфика). Готовят их в определенной последовательности. Так, все химреактивы (кроме гипофосфита натрия) растворяют в воде (посуда эмалированная!). Затем раствор разогревают до рабочей температуры и только после этого растворяют гипофосфит натрия и завешивают детали в раствор.

В 1 л раствора можно отникелировать поверхность площадью до 2 дм.

Составы растворов для никелирования (г/л)

    Сернокислый никель - 25, янтарнокислый натрий - 15, гипофосфит натрия - 30. Температура раствора - 90°С, pH - 4,5, скорость наращивания пленки - 15...20 мкм/ч.

    Хлористый никель - 25, янтарно-кислый натрий - 15, гипофосфит натрия - 30. Температура раствора - 90...92°С, pH - 5,5, скорость наращивания - 18...25 мкм/ч.

    Хлористый никель - 30, гликолевая кислота - 39, гипофосфит натрия - 10. Температура раствора 85...89°С, pH - 4,2, скорость наращивания - 15.,.20 мкм/ч.

    Хлористый никель - 21, уксуснокислый натрий - 10, гипофосфит натрия - 24. Температура раствора - 97°С, pH - 5,2, скорость наращивания - до 60 мкм/ч.

    Сернокислый никель - 21, уксуснокислый натрий - 10, сульфид свинца - 20, гипофосфит натрия - 24. Температура раствора - 90°С, pH - 5, скорость наращивания - до 90 мкм/ч.

    Хлористый никель - 30, уксусная кислота - 15, сульфид свинца - 10...15, гипофосфит натрия - 15. Температура раствора - 85...87°С, pH - 4,5, скорость наращивания - 12...15 мкм/ч.

    Хлористый никель - 45, хлористый аммоний - 45, лимоннокислый натрий - 45, гипофосфит натрия - 20. Температура раствора - 90°С, pH - 8,5, скорость наращивания - 18... 20 мкм/ч.

    Хлористый никель - 30, хлористый аммоний - 30, янтарнокислый натрий - 100, аммиак (25%-ный раствор - 35, гипофосфит натрия - 25). Температура - 90°С, pH - 8...8,5, скорость наращивания - 8...12 мкм/ч.

    Хлористый никель - 45, хлористый аммоний - 45, уксуснокислый натрий - 45, гипофосфит натрия - 20. Температура раствора - 88....90°С, pH - 8...9, скорость наращивания - 18...20 мкм/ч.

    Сернокислый никель - 30, сернокислый аммоний - 30, гипофосфит натрия - 10. Температура раствора - 85°С, pH - 8,2...8,5, скорость наращивания - 15... 18 мкм/ч.

Внимание! По существующим ГОСТам однослойное покрытие никелем на 1 см 2 имеет несколько десятков сквозных (до основного металла) пор. Естественно, что на открытом воздухе стальная деталь, покрытая никелем, быстро покроется «сыпью» ржавчины.

Никелирование изделий из металлов позволяет не только защитить их поверхности от коррозии, но и создать на них блестящее покрытие. Такие изделия широко применяются при изготовлении сантехники, автомобильных запчастей, медицинских инструментов и т. д. В связи с этим многие люди задаются вопросом, можно ли выполнить никелирование стали в домашних условиях?

Технология никелирования металлов

Никелирование осуществляется путем нанесения на металлический предмет тонкого слоя никелевого покрытия. Покрыть никелем можно изделия из различных металлов, таких как:

  • сталь;
  • медь;
  • титан;
  • алюминий.




Существуют металлы, которые нельзя никелировать:

  • олово;
  • свинец;
  • кадмий;
  • сурьма.




Никелевое покрытие обеспечивает защиту изделия от воздействия влаги и различных агрессивных веществ. Часто его наносят в качестве слоя-основы перед хромированием деталей. После нанесения тонкой пленки никеля, напыления из серебра, золота и других металлов держатся более прочно.

В домашних условиях применяются способы, не требующие использования специализированного оборудования. Благодаря этому, никелирование стали, меди, алюминия в бытовых условиях доступно практически каждому человеку. Чтобы получить равномерное покрытие, необходимо предварительно подготовить деталь.

Как подготовить изделие к никелированию?

Подготовка изделия довольно трудоемкий процесс. Следует полностью исключить наличие коррозии, окислений и т. п. Подготовка проводится в несколько этапов.

Обработка пескоструйным аппаратом

Данный вид обработки можно выполнять как специализированным пескоструйным аппаратом, так и самодельным. Во время обработки нужно постараться убрать как можно больше посторонних наслоений с поверхности заготовки. Особое внимание следует обратить на труднодоступные места. Они должны быть очищены так же, как и другие участки поверхности.

Шлифовка

Чтобы никелевое покрытие получилось равномерным, нужно максимально выровнять поверхность. Шлифовка дает возможность очистить предмет от оксидной пленки. Для выполнения этого этапа используется наждачная бумага, а также различные инструменты и приспособления, предназначенные для шлифовки.

Совет: не стоит пренебрегать шлифовкой заготовок, неправильная подготовка может привести к отслоению покрытия.

Устранение жировых загрязнений

После того, как процесс шлифовки окончен, следует смыть образовавшиеся загрязнения под проточной водой. Затем потребуется провести обезжиривание заготовки. Для этого можно использовать как готовые, так и самодельные растворители. После нанесения растворителя деталь нужно еще раз промыть водой и тщательно просушить.

Внимание: при выборе растворителя необходимо учитывать степень его воздействия на металл, из которого выполнено изделие. Запрещается применять обезжиривающие растворы, вступающие в химическую реакцию с поверхностью.

Омеднение

Никелирование изделия лучше проводить с предварительным омеднением заготовки. Этот этап не является обязательным, но никелирование стали и других металлов будет более качественным, если покрытие наносится на тонкий слой меди.

Для омеднения детали необходимо поместить ее в стеклянную емкость с водным электролитом, состоящим из медного купороса и серной кислоты. Предмет подвешивается на проводе таким образом, чтобы он не касался стенок и дна емкости. По обе стороны от заготовки размещаются медные пластины, являющиеся электродами. После этого к электродам и заготовке подключается источник постоянного тока. Степень омеднения прямо зависит от времени проведения процесса.

Способы нанесения никелевого покрытия

Никелирование изделия в домашних условиях можно выполнить двумя способами: химическим и электролитическим.

Электролитический метод

Нанесение покрытия с использованием электролита называется гальваническим никелированием. Сначала потребуется подготовить водный раствор (электролит). Для этого необходимы следующие компоненты:

  • сернокислый никель – 70 г;
  • сернокислый магний – 15 г;
  • поваренная соль – 2.5 г;
  • сернокислый натрий – 25 г;
  • борная кислота – 10г;
  • вода – 500г.






Каждый из компонентов нужно отдельно растворить в воде и профильтровать. Полученные растворы смешивают и заливают в стеклянную емкость. Для гальванического никелирования в сосуд с электролитом помещают никелевые электроды. Чтобы покрытие на заготовке было равномерным, со всех сторон устанавливают не менее двух электродов.

Подготовленную заготовку помещают в сосуд между электродами таким образом, чтобы она не касалась стен и дна емкости. Электроды соединяют между собой медными проводниками, и подключают к плюсовому контакту источника постоянного тока. Токопроводящий провод подключают к минусовому выводу.

В процессе никелирования стали напряжение питания не должно превышать 6 Вольт. Следует контролировать плотность тока, она не должна превышать 1,2 А. Процесс занимает около 30–40 минут. По его окончании, предмет нужно промыть проточной водой и тщательно просушить. Нанесенное покрытие должно получиться матовым и гладким. Чтобы поверхность изделия приобрела блеск, потребуется выполнить ее полировку.

Химический метод

Никелирование стали и других металлов химическим способом отличается от гальванического прочностью покрытия. При помощи химического никелирования можно легко нанести вещество даже на самые труднодоступные места.

В эмалированную посуду наливают воду и растворяют в ней янтарно-кислый натрий и хлористый никель. Затем раствор нагревают до температуры 90 градусов. По достижению требуемой температуры добавляется гипофосфит натрия. Изделие аккуратно подвешивается над емкостью с раствором. Количество жидкости рассчитывается исходя из того, что в 1 литре раствора можно покрыть поверхность площадью 2дм 2 .

Никелирование контролируется визуально: когда деталь равномерно покроется пленкой, процесс завершается. По окончании, деталь нужно промыть в растворе, изготовленном из воды и небольшого количества мела. После этого осуществляют сушку и полировку детали.

Как увеличить срок службы покрытия?

Полученное покрытие имеет пористую структуру. Поэтому металл изделия подвержен коррозии. Чтобы снизить риск ее возникновения, слой никеля покрывают смазочными составами. После их нанесения предмет погружают в емкость с рыбьим жиром. Спустя 24 часа, его излишки убирают при помощи растворителя.

Если изделие имеет крупные габариты, и погрузить его в емкость невозможно, то его поверхность просто натирают рыбьим жиром. Данную процедуру потребуется проводить дважды, с промежутком времени около 12 часов. Через 48 часов после обработки остатки жира нужно удалить.

Выполнить никелирование стали в домашних условиях можно двумя способами. Данный процесс является несложным, но требует тщательной подготовки и предельной аккуратности при выполнении. Необходимо приобрести качественные компоненты для приготовления раствора, заранее подготовить рабочую зону, емкости, инструменты и устройства.

В процессе работы важно соблюдать меры безопасности: защитить глаза и кожные покровы от попадания химических веществ, обеспечить достаточную вентиляцию помещения, предотвратить возможность воспламенения смеси и электрической установки.

НИКЕЛИРОВАНИЕ , технический процесс нанесения на поверхность металлов б. или м. тонкой пленки металлического никеля или никелевых сплавов; цель этого нанесения - уменьшить коррозию металла, увеличить твердость наружного слоя, повысить или изменить отражательную способность поверхности, сообщить ей более красивый вид. Полученное впервые Беттгером в 1842 г. и промышленно осуществленное в США с 1860 г., никелирование в настоящее время сделалось одним из наиболее широко усвоенных промышленностью способов покрытия металлов.

Существующие многочисленные способы никелирования могут быть подразделены на две главные группы: способы контактные и способы гальванотехнические ; в настоящее время особенно часто прибегают к последним. Нанесение никелевой пленки применяется в отношении поверхностей различных металлов, причем в соответствии с характером никелирования их можно разделить на группы: 1) медные, латунные, бронзовые, цинковые, 2) железные, 3) оловянные, свинцовые и из сплавов типа британия-металла, 4) алюминиевые и из алюминиевых сплавов. Никелевые пленки представляют вполне удовлетворительную защиту железа от ржавления во внутренних помещениях.

Однако они недостаточны под открытым небом; кроме того на отполированные никелированные поверхности действуют горячие жиры, уксус, чай, горчица, вследствие чего столовая и кухонная никелированная посуда покрывается пятнами. В тех случаях когда требуется вполне надежная защита от воздействия непогоды и вместе с тем нарядный вид никелированной поверхности, на железо д. б. наложена двойная пленка - цинковая, а затем никелевая. Этот способ двойного покрытия (цинком, а затем никелем) применяется также в отношении т. н. корсетной стали. При необходимости получить особенно стойкие пленки, как например, на проволоках, откладывают одновременно никель и платину, причем содержание последней постепенно повышают от 25% до 100% и, наконец, прокаливают предмет в струе водорода при 900-1000°С. Крупные изделия, например, котлы для варки, барабаны центрифуг или вентиляторы, если по экономическим условиям не могут быть сделаны из чистого никеля, но недостаточно стойки при никелевой пленке по железу или меди, облицовываются слоем свинца в несколько мм, а по нему слоем никеля в 1-2 мм. Ржавление железных и стальных никелированных изделий объясняется присутствием электролита, остающегося в тонких порах никелевой пленки. Это явление устраняется, если изделия перед никелировкой выдержать в масле при 200°С, по охлаждении обезжирить, слабо омеднить, затем отникелировать в лимоннокислой никелевой ванне слабым током и наконец просушить в шкафу при 200°С; тогда влага удаляется из пор, которые закупориваются находящимся в них маслом.

Имеется ряд предложений накладывать двойные защитные пленки по литому железу, железным или стальным листам, проволокам и полосам в порядке обратном вышеуказанному, т. е. сначала покрывать изделия тонкой пленкой никеля контактным или электролитическим способом, а затем уже погружать в ванну с расплавленным цинком или оловом (Вивиен и Лефебр, 1860 г.). Предложено также добавлять некоторое количество никеля в сплав из 25-28 кг цинка, 47-49 кг свинца и 15 кг олова, служащий для покрытия железных листов горячим способом. Стойкость поверхностей алюминия и его сплавов против соли и морской воды м. б. достигнута гальваническим осаждением на них, после очистки их песчаною струей, последовательных слоев: никеля толщиною в 6 мкм, меди в 20 мкм и затем снова никеля в 50 мкм, после чего поверхность полируется. Стойкость алюминия против 15%- ной натровой щелочи достигается никелевой пленкой в 40 мкм толщиною. В некоторых случаях применяется покрытие не чистым никелем, а сплавом, например никелево-медным; для этого электролиз ведется в ванне, содержащей катионы в соотношении требуемого сплава; осажденная пленка затем переводится в сплав нагреванием изделия до краснокалильного жара.

Контактное никелирование . Стальные предметы, согласно указанию Ф. Штольба (1876 г.), после полировки и надлежащего обезжиривания кипятятся в ванне из 10-15%-ного водного раствора чистого хлористого цинка, к которому добавлено сернокислого никеля до образования зеленой мути от основной никелевой соли. Никелирование длится около 1ч. После этого предмет прополаскивается в воде с мелом, а ванна, после фильтрации и добавки никелевой соли, может применяться вновь. Получающаяся пленка никеля тонка, но держится прочно. Для повышения температуры ванны предложено или вести процесс под давлением (Ф. Штольба,. 1880 г.) или применять ванну с концентрированным раствором хлористого цинка. Во избежание ржавления предметов их выдерживают в течение 12 ч. в известковом молоке. Более сложная ванна для железных предметов, предварительно омедненных в ванне из 250 г сернокислой меди в 23 л воды с несколькими каплями серной кислоты, содержит 20 г винного камня, 10 г нашатыря, 5 г хлористого натрия, 20 г хлорного олова, 30 г сернокислого никеля и 50 г двойной сернокислой никелево-аммониевой соли.

Гальваническое никелирование . Обеднение никелевой ванны м. б. предупреждаемо достаточно легким растворением никелевых анодов. Вальцованные, и в особенности из чистого никеля, аноды растворяются трудно и потому при техническом никелировании пользуются в качестве анодов никелевыми брусками, содержащими до 10% железа. Однако такие аноды ведут к осаждению на предмете железа, а наличие железа в никелевой пленке влечет за собой целый ряд пороков никелирования. Как указано Калгане и Гаммоге (1908 г.), невозможно получить при анодах с железом осадок, вполне свободный от последнего. Но осадок никеля будет содержать уже только 0,10-0,14% железа, если в анодах содержание железа снижено до 7,5%; содержание железа в осадке можно еще уменьшить, заключая аноды в тканевые мешки, тогда как вращение электродов ведет к повышенному содержанию железа в осадке и к снижению его выхода. Присутствие железа в никелевой пленке ведет к отложению осадков с постепенно понижающимся содержанием железа и потому неоднородных в отношении механических свойств на различной глубине; К. Энгеман (1911 г.) считает эту неоднородность единственной причиной легкой отщепляемости никелевых пленок. Наличие железа м. б. причиною ряда других пороков никелирования (см. табл.), например, легкости ржавления пленок.

Порок Причина возникновения Мера борьбы
Осаждение никеля не происходит, газообразования нет Источник тока не работает Проверка и возобновление источника энергии
Провода приключены неправильно Переключение проводов
Ванна слишком холодна Нагрев ванны до температуры выше 15°С
Ванна слишком кисла Подливается водный раствор нашатырного спирта или водная взвесь углекислого никеля при непрерывном помешивании и частом испытании на конго-бумагу
Ванна содержит цинк Ванна делается щелочной посредством углекислого никеля, размешивается в течение нескольких часов, фильтруется и подкисляется 10%-ной серной кислотой
Неполное покрытие предмета никелевой пленкой Недостаточный ток Предметы подвешиваются на равных расстояниях от анодов, ванна подогревается не менее как до 20°С
Очень глубокие вогнутости поверхности предмета Устанавливаются небольшие вспомогательные аноды, вводимые в углубления предмета
Щелочность ванны Осторожное подкисление ванны 10%-ной серной кислотой при помешивании и постоянном испытании лакмусовой бумагой
Легкая отщепляемость белой или же желто-никелевой пленки при полировке Загрязненность поверхности предметов окислами и жиром Дополнительная очистка поверхности предметов
Слишком большое напряжение (выше 4 V ) Увеличивают число никелируемых предметов или снижают напряжение до 2,5-3 V
Слишком большая кислотность ванны Нейтрализация нашатырным спиртом или водной взвесью углекислого никеля
Бедность ванны никелем Удаление части электролита и добавка никелевой соли, пока ванна не станет нормального зеленого цвета
Несоответственные вязкость и поверхностное натяжение ванны Добавка глицерина или амилового спирта, или растительных отваров, или других коллоидов
Выделение водородных ионов Добавка окислителей или поглотителей водорода; применение несимметричного переменного тока
Несоответственная подготовка поверхности предметов Сообщение поверхностям шероховатости, механически или химически, покрытие их тонким слоем никеля из горячего раствора хлористого никеля или холодного концентрированного раствора этило-сернокислого никеля
Отставание никелевой пленки или разрыв ее при изгибе и растяжении предметов Присутствие капиллярных прослоек электролита Просушка и нагрев предметов до 250-270°С
Недостаточная обрабатываемость листов, покрытых толстым слоем никеля Вероятно та же Промывка, просушка без доступа воздуха и наконец, нагрев до слабого краснокалильного жара
Поверхность в ямочках и пленка пронизана бесчисленными порами Пыль и частички волокон, плавающие в ванне Ванну кипятят, фильтруют и устанавливают в ней правильную реакцию
Образование газовых пузырьков Постукивание по токоведущему стержню. Пузырьки удаляют; устанавливают слабокислую реакцию
Грубость и неровность поверхности Выделение водорода Введение связывающего водород свободного хлора в газообразном виде временами пропускаемой струей или в водном растворе; с несколько меньшим успехом хлор м. б. заменен бромом; весьма рекомендуется добавление раствора хлористого кобальта
Недостаточная гибкость пленки Высокое сопротивление ванны Добавка соли натрия
Желтизна пленки; поверхность становится матовой, а затем получает желтый и тёмно-жёлтый цвет Наличие примесей железа в ванне, содержание которых повышается в старых ваннах Избегать старых ванн, не слишком двигать ванны, работать со слабыми токами
Чернота пленка, темные полосы в местах отставания при правильной плотности тока Содержание в ванне посторонних металлов (до 1%) Удаление посторонних металлов

Недостаток проводящих солей

Добавление проводящих солей в количестве 2-3 кг на 100 л ванны: нашатырь, хлористый калий и хлористый натрий дают повышение проводимости на 84,31 и 18% соответственно
Бедность ванны солью никеля Добавка никелевой соли
Загар поверхности Слишком большая проводимость ванны из-за чрезмерной крепости ее Контроль концентрации ванны (например, постоянства плотности в 5° Вẻ) и плотности тока
Образование полос Загрязнения, производимые полировальным кругом в небольших углублениях Устранение затруднительно; достигается до известной степени мгновенным погружением в котел со щелоком или механической протиркой предметов
Изменения концентрации и возникновение потоков жидкости Уменьшение плотности тока и повышение температуры ванны
Образование пятен Недостаточная очистка готовых отникелированных изделий Тщательная промывка в проточной воде изделий после никелирования, затем погружение в кипящую вполне чистую воду, отряхивание изделий и просушка в нагретых опилках
Непрочное приставание никелевой пленки к железу Наличие ржавчины Тщательное освобождение от ржавчины. Гальваническое нанесение промежуточного слоя из цианкалиевой ванны, после чего пленка утолщается в кислой ванне

Электролитическая ванна для никелирования составляется гл. образом из двойной никелево-аммониевой соли, причем для устранения основных солей добавляют слабые кислоты. Большая кислотность ванны ведет к более твердым пленкам. Необходимо иметь в виду, что технический никелевый купорос не пригоден для ванн, т. к. часто содержит медь; ее следует удалить пропусканием сероводорода через водный раствор купороса. Применяются также хлористые соли, но при сульфатных ваннах осадки тверже, белее и более стойки, чем при хлоридных. Высокое сопротивление никелевой ванны выгодно снижать добавкой различных проводящих солей - особенно нашатыря и хлористого натрия - и нагреванием. Нейтрализация избыточной серной кислоты в старых растворах успешно производится углекислым никелем, который получается из теплого водного раствора сернокислого никеля, осаждаемого содой. Для белизны и гладкости пленок сделано большое количество предложений добавлять к никелевой ванне различные органические кислоты (винную, лимонную и т. д.) и их соли, например, уксусно-, лимонно- и виннокислые соли щелочных и щелочноземельных металлов (Кейт, 1878 г.), пропионовокислый никель, борно-виннокислые соли щелочных металлов. При необходимости получить толстые никелевые осадки предложено добавление борной, бензойной, салициловой, галловой или пирогалловой кислот, и кроме того 10 капель серной, муравьиной, молочной кислоты на 1 л ванны, чтобы предупредить поляризацию на изделии. Как указал Пауелл (1881 г.), прибавка бензойной кислоты (31 г на ванну из 124 г сернокислого никеля и 93 г лимоннокислого никеля в 4,5 л воды) избавляет от необходимости пользоваться химически чистыми солями и кислотами. Осадок никеля имеет хорошие свойства также и при простой ванне из никелево-аммонийного сульфата, но при условии щелочности раствора, что достигается добавкой аммиака. Весьма хорошие осадки получаются из нейтрального раствора фтористо-борнокислого никеля при комнатной температуре (при температуре выше 35°С раствор разлагается с образованием нерастворимой основной соли) и плотности тока 1,1-1,65 А/дм 2 . Приводим несколько рецептов ванн. 1) 50 ч. бисульфита натрия, 4 ч. азотнокислого окисного никеля и 4 ч. концентрированного нашатырного спирта растворяют в 150 ч. воды. 2) 10-12 ч. сернокислого никеля, 4 ч. двойной никелево-аммониевой сернокислой соли, 1-3 ч. борной кислоты, 2 ч. хлористого магния, 0,2-0,3 ч. лимоннокислого аммония, доливается до 100 ч. (всего) воды. Ток плотностью 1,6 А/дм 2 отлагает пленку со скоростью 2 мкм/ч.; повышая температуру до 70°С, можно снизить сопротивление ванны в два-три раза и тем ускорить никелирование. 3) Электролит из 72 г двойной никелево-аммониевой сернокислой соли, 8 г сернокислого никеля, 48 г борной кислоты и 1 л воды особенно благоприятен для мягкости и непористости осадка, т. к. снижает выделение водорода.

Получение никелевых пленок особого вида . 1) Белая пленка по цинку, олову, свинцу и британия-металлу получается в ванне из 20 г двойной никелево-аммониевой сернокислой соли и 20 г углекислого никеля, растворенных в 1 л кипящей воды, и нейтрализованной при 40°С уксусной кислотою; ванна должна поддерживаться нейтральной. 2) Матово-белая пленка получается в ванне из 60 г двойной никелево-аммониевой сернокислой соли, 15 г перекристаллизованного сернокислого никеля, 7,4 г нашатыря, 23 г хлористого натрия и 15 г борной кислоты на 1 л воды; ванна д. б концентрирована до 10° Вẻ; напряжение от 2 до 2,5 V. 3) Черная пленка получается на поверхностях, тщательно обезжиренных или покрытых тонким слоем белого никеля путем электролиза в ванне из 60 г двойной никелево-аммониевой сернокислой соли, 1,5 г роданистого аммония и около 1 г сернокислого цинка на 1 л воды 4) Черная пленка получается также в электролите из 9 г двойной никелево-аммониевой сернокислой соли в 1 л воды с последующей добавкой 22 г роданистого калия, 15 г углекислой меди и 15 г белого мышьяка, предварительно растворенного в углекислом аммонии; глубина черного тона вырастает с содержанием в растворе мышьяка. 5) Глубоко синяя пленка получается в ванне из равных частей двойной и простой сернокислых солей никеля, доведенной до 12° Bẻ, причем на литр добавляют 2 ч. аммиачного отвара лакричного корня; электролиз длится 1 час при 3,5 V, а затем еще 1/2 часа при 1,4 V. 6) Коричневая пленка получается так: электролиз при напряжении 0,75-1 V ведется в ванне из 180 г двойной никелево-аммониевой сернокислой соли и 60 г сернокислого никеля, растворенных в возможно малом количестве кипящей воды, добавленной до 50 см 3 и смешанной затем с растворами 30 г сернокислого никеля и 60 г роданистого натрия, каждый в 0,5 л воды, после чего добавляют раствор до 4,5 л. Полученной пленке черного цвета придают коричневый оттенок, погружая изделие на несколько секунд в ванну из 100,6 г перхлората железа и 7,4 г соляной кислоты в 1 л воды: после промывки и просушки поверхность изделия для закрепления тона лакируют.

Никелирование алюминия и его сплавов . Предложено несколько процессов. 1) Подготовка поверхности алюминиевых изделий состоит в обезжиривании, затем очистке пемзой и наконец погружении в 3%-ный водный раствор цианистого калия; после электролиза в никелевой ванне изделия промываются холодной водой. 2) После промывки 2%-ным раствором цианистого калия изделия погружаются в раствор из 1 г хлористого железа (феррохлорид) на 0,5 л воды и технической соляной кислоты, пока поверхность не станет серебряно-белой, и затем никелируются в течение 5 мин. при напряжении 3 V. 3) Полировка изделий, удаление полировочного состава бензином, выдержка в течение нескольких минут в теплом водном растворе фосфорнокислого натрия, соды и смолы, промывка, погружение на короткое время в смесь из равных частей 66%-ной серной кислоты (содержащей несколько хлористого железа) и 38%-ной азотной кислоты, новая промывка и электролиз в ванне, содержащей никелевую соль, горькую соль и борную кислоту; напряжение 3-3,25 V. 4) По Ж. Канаку и Э. Тассилли: протравка изделия кипящей калиевой щелочью, чистка щеткой в известковом молоке, 0,2%-ная цианкалиевая ванна, ванна из 1 г железа в 500 г соляной кислоты и 500 г воды, промывка, никелирование в ванне из 1 л воды, 500 г хлористого никеля и 20 г борной кислоты при напряжении 2,5 V и плотности тока 1 А/дм 2 , наконец полировка матово-серого осадка. Железная ванна служит для огрубления поверхности алюминия и тем содействует прочности, с какою удерживается пленка на металле. 5) По Фишеру, ванна для никелирования составляется из 50 г сернокислого никеля и 30 г нашатыря в 1 л воды при плотности тока 0,1-0,15 А/дм 2 , за 2-3 часа получается толстый осадок, который обладает высоким блеском после полировки стеариновым маслом и венской известью. 6) Горячая ванна (60°С) составляется из 3400 г двойной никелево-аммониевой сернокислой соли, 1100 г сернокислого аммония и 135 г молочного сахара в 27 л воды. 7) Холодная ванна содержит азотнокислый никель, цианистый калий и фосфорнокислый аммоний.

Контроль никелевой пленки . Распознавание состава металлической пленки на предмете, по Л. Ловитону (1886 г.), может производиться посредством нагревания предмета в наружном пламени бунзеновской горелки: никелевая пленка синеет, получает черный отблеск и сохраняется невредимою; серебро не изменяется в пламени, но чернеет при обработке разбавленным раствором сернистого аммония; наконец оловянное покрытие быстро становится от серо-желтого до серого и исчезает при обработке указанным реагентом. Проверка качества никелевой пленки на железе и меди в отношении пор и изъянов может производиться при помощи т. н. ферроксилового испытания и с особым удобством при помощи ферроксиловой бумаги, покрытой гелем агар-агара с железисто-синеродистым калием и хлористым натрием. Наложенная в смоченном виде на испытуемую поверхность и по прошествии 3-5 мин. закрепленная в воде, эта бумага дает документальное изображение малейших пор, которое м. б. сохраняемо.

Регенерация никеля со старых изделий . Удаление никелевого покрытия с изделий из железа и других неамальгамируемых металлов производится следующими способами: а) парами ртути под вакуумом или под обыкновенным давлением; б) нагреванием обрезков с серой, после чего слой металла легко удаляется молотками; в) нагреванием обрезков с веществами, отдающими серу при высокой температуре) при внезапном охлаждении пленка никеля соскакивает; г) обработкой нагретой до 50-60°С серной или азотной кислотой; железо переходит в раствор, и никель остается почти нерастворенным; однако несмотря на свою простоту этот способ мало применим, т. к. полученный никель сохраняет еще значительное содержание железа, не удаляемое и при повторной обработке кислотою (Т. Флейтман); д) длительным нагреванием при доступе воздуха или водяного пара, после чего обрезки подвергаются механическим ударам и никель отскакивает; е) электролитическим растворением: железный покрываемый никелем предмет делают анодом в ванне, содержащей углекислый аммоний; если покрытие состоит из сплава никеля, то необходимо регулировать напряжение, причем при 0,5 V осаждается медь, а при напряжении большем 2 V - никель; при этом процессе железо не разъедается; ж) железные или стальные обрезки делают анодом в ванне из водного раствора натриевой селитры, тогда как катод состоит из угольной палки; напряжение не должно превосходить 20 V; з) с цинковых кружек никель удаляется электролизом предметов, сделанных анодом в 50°-ной серной кислоте; кислота этой концентрации обладает свойством растворять только никель, серебро и золото, но не другие металлы, если идет ток; напряжение применяется 2-5 V; в качестве катодов служат железные листы, на которых никель осаждается в виде пыли; цинк не растворяется, хотя бы кружки и оставались в электролите долгое время.

Просмотров