Сопротивление паропроницанию материалов и тонких слоев пароизоляции. Паропроницаемость строительных материалов Повышенной паропроницаемостью

Паропроницаемость - способность материала пропускать или задерживать пар в результате разности парциального давления водяного пара при одинаковом атмосферном давлении по обеим сторонам материала. Паропроницаемость характеризуется величиной коэффициента паропроницаемости или величиной коэффициента сопротивления проницаемости при воздействии водяного пара. Коэффициент паропроницаемости измеряется в мг/(м·ч·Па).

В воздухе всегда содержится какое-то количество водяного пара, причем в теплом всегда больше, чем в холодном. При температуре внутреннего воздуха 20 °С и относительной влажности 55% в воздухе содержится 8 г водяных паров на 1 кг сухого воздуха, которые создают парциальное давление 1238 Па. При температуре –10°С и относительной влажности 83% в воздухе содержится около 1 г пара на 1 кг сухого воздуха, создающего парциальное давление 216 Па. Из-за разницы парциальных давлений между внутренним и наружным воздухом через стену происходит постоянная диффузия водяных паров из теплого помещения наружу. В результате в реальных условиях эксплуатации материал в конструкциях находится в несколько увлажненном состоянии. Степень увлажнения материала зависит от температурно-влажностных условий снаружи и внутри ограждения. Изменение коэффициента теплопроводности материала в эксплуатируемых конструкциях учитывается коэффициентами теплопроводности λ(A) и λ(Б), которые зависят от зоны влажности местного климата и влажностного режима помещения.
В результате диффузии водяных паров в толще конструкции происходит движение влажного воздуха из внутренних помещений. Проходя через паропроницаемые конструкции ограждения, влага испаряется наружу. Но если у наружной поверхности стены расположен слой материала, не пропускающий или плохо пропускающий водяные пары, то влага начинает скапливаться у границы паронепроницаемого слоя, вызывая отсыревание конструкции. В результате теплозащита влажной конструкции резко понижается, и она начинает промерзать. в данном случае возникает необходимость установки пароизоляционного слоя с теплой стороны конструкции.

Вроде бы всё относительно просто, но про паропроницаемость зачастую вспоминают только в контексте "дышащести" стен. Однако, это краеугольный камень в выборе утеплителя! К нему нужно подходить очень и очень осторожно! Нередки случаи, когда домовладелец утепляет дом, исходя лишь из показателя теплосопротивления, например, деревянный дом пенопластом. В результате получает загнивающие стены, плесень по всем углам и винит в этом "неэкологичный" утеплитель. Что касается пенопласта, то из за своей малой паропроницаемости его нужно использовать с умом и очень хорошо подумать, подходит ли он вам. Именно по этому показателю зачастую ватные или любые другие пористые утеплители подходят лучше для утепления стен снаружи. Кроме того, с ватными утеплителями сложнее ошибиться. Однако, бетонные или кирпичные дома можно без опасений утеплять и пенопластом - в этом случае пенопласт "дышит" лучше, чем стена!

В таблице ниже приведены материалы из списка ТКП, показатель паропроницаемости - последний столбец μ.

Как понять, что такое паропроницаемость, и зачем она нужна. Многие слышали, а некоторые и активно употребляют термин "дышашие стены" - так вот, "дышашими" такие стены называют потому, что они способны пропускать воздух и водяной пар через себя. Некоторые материалы (например, керамзит, дерево, все ватные утеплители) хорошо пропускают пар, а некоторые очень плохо (кирпич, пенопласты, бетон). Выдыхаемый человеком, выделяемый при приготовлении пищи или принятии ванной пар, если в доме нет вытяжки, создаёт повышенную влажность. Признаком этого является появление конденсата на окнах или на трубах с холодной водой. Считается, что если стена имеет высокую паропроницаемость, то в доме легко дышится. На самом же деле, это не совсем так!

В современном доме, даже если стены сделаны из «дышащего» материала, 96% пара удаляется из помещений через вытяжку и форточку, и только 4% через стены. Если на стены наклеены виниловые или флизиленовые обои, то стены влагу не пропускают. А если стены действительно «дышащие», то есть без обоев и прочей пароизоляции, в ветренную погоду из дома выдувает тепло. Чем выше паропроницаемость конструкционного материала (пенобетон, газобетон и прочие тёплые бетоны), тем больше он может набрать влаги, и как следствие, у него более низкая морозостойкость. Пар, выходя из дома через стену, в «точке росы» превращается в воду. Теплопроводность отсыревшего газоблока увеличивается многократно, то есть в доме будет, мягко говоря, очень холодно. Но самое страшное, что при падении ночью температуры, точка росы смещается внутрь стены, а конденсат, находящийся в стене замерзает. Вода при замерзании расширяется и частично разрушает структуру материала. Несколько сотен таких циклов приводят к полному разрушению материала. Поэтому паропроницаемость строительных материалов может сослужить вам плохую службу.

Про вред повышенной паропроницаемости в интернете гуляет с сайта на сайт . Приводить её содержание на своём сайте я не буду в силу некоторого несогласия с авторами, однако избранные моменты хочется озвучить. Так, например, известный производитель минерального утеплителя, компания Isover, на своём англоязычном сайте изложила "золотые правила утепления" (What are the golden rules of insulation? ) из 4-х пунктов:

    Эффективная изоляция. Используйте материалы с высоким термическим сопротивлением (низкой теплопроводностью). Самоочевидный пункт, не требующий особых комментариев.

    Герметичность. Хорошая герметичность является необходимым условием для эффективной системы теплоизоляции! Негерметичная теплоизоляция, независимо от её коэффициента теплоизоляции, может увеличивать потребление энергии от 7 до 11% на отопление здания. Поэтому о герметичности здания следует задумываться ещё на стадии проектирования. А по окончании работ проверить здание на герметичность.

    Контролируемая вентиляция. Именно на вентиляцию возлагается задача по удалению излишней влажности и пара. Вентиляция не должа и не может осуществляться за счёт нарушения герметичности ограждающих конструкций!

    Качественный монтаж. Об этом пункте, я думаю, тоже нет нужды говорить.

Важно отметить, что компания Isover не выпускает какие-либо пенопластовые утеплители, они занимаются исключительно минераловатными утеплителями, т.е. продуктами, имеющими наиболее высокий показатель паропроницаемости! Это действительно заставляет задуматься: как же так, вроде бы паропроницаемость необходима для отвода влаги, а производители рекомендуют полную герметичность!

Дело тут в недопонимании этого термина. Паропроницаемость материалов не предназначена для отвода влаги из жилого помещения - паропроницаемость нужна для отвода влаги из утеплителя ! Дело в том, что любой пористый утеплитель не является по сути самим утеплителем, он лишь создаёт структуру, удерживающую истинный утеплитель - воздух - в замкнутом объёме и по возможности неподвижным. Если вдруг образуется такое неблагоприятное условие, что точка росы оказывается в паропроницаемом утеплителе, то в нём будет конденсироваться влага. Эта влага в утеплителе берётся не из помещения! Воздух сам всегда содержит в себе какое-то количество влаги, и именно эта естественная влага и представляет угрозу утеплителю. Вот для отвода этой влаги наружу и нужно, чтобы после утеплителя были слои с не меньшей паропроницаемостью.

Семья из четырёх человек за сутки в среднем выделяет пар, равный 12 литрам воды! Эта влага из воздуха внутренних помещений никоим образом не должа попадать в утеплитель! Куда девать эту влагу - это вообще не должно никоим образом волновать утеплитель - его задача лишь утеплять!

Пример 1

Давайте разберём вышесказанное на примере. Возьмём две стены каркасного дома одинаковой толщины и одинакового состава (изнутри к наружному слою), отличатся буду они только видом утеплителя:

Лист гипсокартона (10мм) - OSB-3 (12мм) - Утеплитель (150мм) - ОSB-3 (12мм) - вентзазор (30мм) - ветрозащита - фасад.

Утеплитель выберем с абсолютно одинаковой теплопроводностью - 0,043 Вт/(м °С), основное, десятикратное отличие между ними только в паропроницаемости:

    Пенополистирол ПСБ-С-25.

Плотность ρ= 12 кг/м³.

Коэффициент паропроницаемости μ= 0.035 мг/(м ч Па)

Коэф. теплопроводности в климатических условиях Б (худший показатель) λ(Б)= 0.043 Вт/(м °С).

Плотность ρ= 35 кг/м³.

Коэффициент паропроницаемости μ= 0.3 мг/(м ч Па)

Конечно, условия расчёта я тоже использую абсолютно одинаковые: температура внутри +18°С, влажность 55%, температура снаружи -10°С, влажность 84%.

Расчёт я провел в теплотехническом калькуляторе , кликнув по фото, вы перейдёте прямо на страницу расчёта:

Как видно из расчёта, теплосопротивление обоих стен совершенно одинаково (R=3.89), и даже точка росы у них расположена почти одинаково в толще утеплителя, однако, из за высокой паропроницаемости в стене с эковатой будет конденсироваться влага, сильно увлажняя утеплитель. Как бы ни была хороша сухая эковата, сырая эковата тепло держит во много раз хуже. А если допустить, что температура на улице опустится до -25°С, то зона конденсации составит почти 2/3 утеплителя. Такая стена не удовлетворяет нормам по защите от переувлажнения! С пенополистиролом ситуация принципиально другая потому, что воздух в нём находится в замкнутых ячейках, ему просто неоткуда набрать достаточное количество влаги для выпадения росы.

Справедливости ради нужно сказать, что эковату без пароизоляционных плёнок не укладывают! И если добавить в "стеновой пирог" пароизоляционную плёнку между ОSB и эковатой с внутренней стороны помещения, то зона конденсации практически выйдет из утеплителя и конструкция полностью будет удовлетворять требованиям по увлажнению (см. картинку слева). Однако, устройство пароиозяции практически лишает смысла размышления о пользе для микроклимата помещения эффекта "дыхания стены". Пароизоляционная мембрана имеет коэффициент паропроницаемости около 0,1 мг/(м·ч·Па), а порой пароизолируют полиэтиленовыми плёнками или утеплителями с фольгированной стороной - их коэффициент паропроницаемости стремится к нулю.

Но низкая паропроницаемость тоже далеко не всегда хороша! При утеплении достаточно хорошо паропроницаемых стен из газо- пенобетона экструдированным пенополистиролом без пароизоляции изнутри в доме непременно поселится плесень, стены будут влажными, а воздух будет совсем не свеж. И даже регулярное проветривание не сможет высушить такой дом! Давайте смоделируем ситуацию, противоположную прошлой!

Пример 2

Стена на этот раз будет состоять из следующих элементов:

Газобетон марки D500 (200мм) - Утеплитель (100мм) - вентзазор (30мм) - ветрозащита - фасад.

Утеплитель выберем точно такой же, и более того, стену сделаем с точно таким же теплосопротивлением (R=3.89).

Как видим, при совершенно равных теплотехнических характеристиках мы можем получить радикально противоположные результаты от утепления одними и теми же материалами!!! Нужно отметить, что во втором примере обе конструкции удовлетворяют нормам по защите от переувлажнения, не смотря на то, что зона конденсации попадает в газосиликат. Такой эффект связан с тем, что плоскость максимального увлажнения попадает в пенополистирол, а из за его низкой паропроницаемости в нём влага не конденсируется.

В вопросе паропроницаемости нужно разобраться досконально ещё до того, как вы решите, как и чем вы будете утеплять свой дом!

Слоёные стены

В современном доме требования к теплоизоляции стен столь высоки, что однородная стена уже не способна соответствовать им. Согласитесь, при требовании к теплосопротивлению R=3 делать однородную кирпичную стену толшиной 135 см не вариант! Современные стены - это многослойные конструкции, где есть слои, выполняющие роль теплоизоляции, конструктивные слои, слой наружной отделки, слой внутренней отделки, слои паро- гидро- ветро-изоляций. В связи с разнообразными характеристиками каждого слоя очень важно правильно их располагать! Основное правило в расположении слоёв конструкции стены таково:

Паропроницаемость внутреннего слоя должна быть ниже, чем наружного, для свободного выходы пара за стены дома. При таком решении «точка росы» перемещается к наружной стороне несущей стены и не разрушает стен здания. Для предотврощения выпадения конденсата внутри ограждающей конструкции сопротивление теплопередаче в стене должно уменьшаться, а сопротивление паропроницанию возрастать снаружи внутрь.

Думаю, нужно это проиллюстрировать для лучшего понимания.

В последнее время все большее применение в строительстве находят разнообразные системы наружного утепления: "мокрого" типа; вентилируемые фасады; модифированная колодезная кладка и т.д. Всех их объединяет то, что это многослойные ограждающие конструкции. А для многослойных конструкций вопросы паропроницаемости слоев, переноса влаги, количественной оценки выпадающего конденсата являются вопросами первостепенной важности.

Как показывает практика, к сожалению, что этим вопросам как проектировщики, так и архитекторы не уделяют должного внимания.

Мы уже отмечали, что российский строительный рынок перенасыщен импортными материалами. Да, безусловно, законы строительной физики одни и те же, и действуют одинаково, например, как в России, так и в Германии, но методики подхода и нормативная база, очень часто, весьма различны.

Поясним это на примере паропроницаемости. DIN 52615 вводит понятие паропроницаемости через коэффициент паропроницаемости μ и воздушный эквивалентный промежуток s d .

Если сравнить паропроницаемость слоя воздуха толщиной 1 м с паропроницаемостью слоя материала той же толщины, то получим коэффициент паропроницаемости

μ DIN (безразмерный) = паропроницаемость воздуха/паропроницаемость материала

Сравните, понятие коэффициента паропроницаемости μ СНиП в России вводится через СНиП II-3-79* "Строительная теплотехника", имеет размерность мг / (м * ч * Па) и характеризует то количество водяного пара в мг, которое проходит через один метр толщины конкретного материала за один час при разности давлений в 1 Па.

Каждый слой материала в конструкции имеет свою конечную толщину d , м. Очевидно, что количество водяного пара, прошедшего через этот слой будет тем меньше, чем больше его толщина. Если перемножить μ DIN и d , то и получим, так называемый, воздушный эквивалентный промежуток или диффузно-эквивалентную толщину слоя воздуха s d

s d = μ DIN * d [м]

Таким образом, по DIN 52615, s d характеризует толщину слоя воздуха [м], которая обладает равной паропроницаемостью со слоем конкретного материала толщиной d [м] и коэффициентом паропроницаемости μ DIN . Сопротивление паропроницанию 1/Δ определяется как

1/Δ= μ DIN * d / δ в [(м² * ч * Па) / мг],

где δ в - коэффициент паропроницаемости воздуха.

СНиП II-3-79* "Строительная теплотехника" определяет сопротивление паропроницанию R П как

R П = δ / μ СНиП [(м² * ч * Па) / мг],

где δ - толщина слоя, м.

Сравните, по DIN и СНиП сопротивления паропроницаемости, соответственно, 1/Δ и R П имеют одну и ту же размерность.

Мы не сомневаемся, что нашему читателю уже понятно, что вопрос увязки количественных показателей коэффициента паропроницаемости по DIN и СНиП лежит в определении паропроницаемости воздуха δ в .

По DIN 52615 паропроницаемость воздуха определяется как

δ в =0,083 / (R 0 * T) * (p 0 / P) * (T / 273) 1,81 ,

где R 0 - газовая постоянная водяного пара, равная 462 Н*м/(кг*К);

T - температура внутри помещения, К;

p 0 - среднее давление воздуха внутри помещения, гПа;

P - атмосферное давление при нормальном состоянии, равное 1013,25 гПа.

Не вдаваясь глубоко в теорию, отметим, что величина δ в в незначительной степени зависит от температуры и может с достаточной точностью при практических расчетах рассматриваться как константа, равная 0,625 мг/(м*ч*Па) .

Тогда, в том случае, если известна паропроницаемость μ DIN легко перейти к μ СНиП , т.е. μ СНиП = 0,625/ μ DIN

Выше мы уже отмечали важность вопроса паропроницаемости для многослойных конструкций. Не менее важным, с точки зрения строительной физики, является вопрос последовательности слоев, в частности, положение утеплителя.

Если рассматривать вероятность распределения температур t , давления насыщенного пара Рн и давления ненасыщенного (реального) пара Pp через толщу ограждающей конструкции, то с точки зрения процесса диффузии водяного пара наиболее предпочтительна такая последовательность расположения слоев, при которой сопротивление теплопередаче уменьшается, а сопротивление паропроницанию возрастает снаружи внутрь.

Нарушение этого условия, даже без расчета, свидетельствует о возможности выпадения конденсата в сечении ограждающей конструкции (рис. П1).

Рис. П1

Отметим, что расположение слоев из различных материалов не влияет на величину общего термического сопротивления, однако, диффузия водяного пара, возможность и место выпадения конденсата предопределяют расположение утеплителя на внешней поверхности несущей стены.

Расчет сопротивления паропроницаемости и проверку возможности выпадения конденсата необходимо вести по СНиП II-3-79* "Строительная теплотехника".

В последнее время пришлось столкнуться с тем, что нашим проектировщикам предоставляются расчеты, выполненные по зарубежным компьютерным методикам. Выскажем свою точку зрения.

· Такие расчеты, очевидно, не имеют юридической силы.

· Методики рассчитаны на более высокие зимние температуры. Так, немецкая методика "Bautherm" уже не работает при температурах ниже -20 °С.

· Многие важные характеристики в качестве начальных условий не увязаны с нашей нормативной базой. Так, коэффициент теплопроводности для утеплителей дается в сухом состоянии, а по СНиП II-3-79* "Строительная теплотехника" должен браться в условиях сорбционной влажности для зон эксплуатации А и Б.

· Баланс набора и отдачи влаги рассчитывается для совершенно других климатических условий.

Очевидно, что количество зимних месяцев с отрицательными температурами для Германии и, скажем, для Сибири совершенно не совпадают.

Согласно СП 50.13330.2012 "Тепловая защита зданий", приложение Т, таблица Т1 "Расчетные теплотехнические показатели строительных материалов и изделий" коэффициент паропроницаемость оцинкованного нащельника (мю, (мг/(м*ч*Па)) будет равна:

Вывод: внутренний оцинкованный нащельник (смотрим рисунок 1) в светопрозрачных конструкциях может устанавливаться без пароизоляции.

Для устройства пароизоляционного контура рекомендуется:

Пароизоляция мест крепления оцинкованного листа, это можно обеспечить мастикой

Пароизоляция мест стыковки оцинкованного листа

Пароизоляция мест стыковки элементов (оцинкованный лист и витражный ригель или стойка)

Обеспечить отсутствие паропропускания через крепежные элементы (полые заклепки)

Термины и определения

Паропроницаемость - способность материалов пропускать водяной пар через свою толщину.

Водяной пар - газообразное состояние воды.

Точка росы - точка росы характеризует количество влажности в воздухе (содержания водяного пара в воздухе). Температура точки росы определяется как температура окружающей среды, до которой воздух должен охладится, чтобы содержащийся в нем пар достиг состояния насыщения и начал конденсироваться в росу. Таблица 1.

Таблица 1 - Точка росы

Паропроницаемость - измеряется количеством водяного пара, проходящим через 1м2 площади, толщиной 1метр, в течении 1 часа, при разности давлений 1 Па. (согласно СНиПа 23-02-2003). Чем ниже паропроницаемость, тем лучше теплоизоляционный материал.

Коэффициент паропроницаемость (DIN 52615) (мю, (мг/(м*ч*Па)) это отношение паропроницаемости слоя воздуха толщиной 1 метр к паропроницаемости материала той же толщины

Паропроницаемость воздуха можно рассмотреть как константу, равную

0,625 (мг/(м*ч*Па)

Сопротивляемость слоя материала зависит от его толщины. Сопротивляемость слоя материала определяется путем деления толщины на коэффициент паропроницаемости. Измеряется в (м2*ч*Па) /мг

Согласно СП 50.13330.2012 "Тепловая защита зданий", приложение Т, таблица Т1 "Расчетные теплотехнические показатели строительных материалов и изделий" коэффициент паропроницаемость (мю, (мг/(м*ч*Па)) будет равна:

Сталь стержневая, арматурная (7850кг/м3), коэфф. паропроницаемости мю = 0;

Алюминий (2600) = 0; Медь (8500) = 0; Стекло оконное (2500) = 0; Чугун (7200) = 0;

Железобетон (2500) = 0,03; Раствор цементно-песчаный (1800) = 0,09;

Кирпичная кладка из пустотелого кирпича (керамический пустотный с плотностью 1400кг/м3 на цементном песчаном растворе) (1600) = 0,14;

Кирпичная кладка из пустотелого кирпича (керамический пустотный с плотностью 1300кг/м3 на цементном песчаном растворе) (1400) = 0,16;

Кирпичная кладка из сплошного кирпича (шлакового на цементном песчаном растворе) (1500) = 0,11;

Кирпичная кладка из сплошного кирпича (глиняного обыкновенного на цементном песчаном растворе) (1800) = 0,11;

Плиты из пенополистирола плотностью до 10 - 38 кг/м3 = 0,05;

Рубероид, пергамент, толь (600) = 0,001;

Сосна и ель поперек волокон (500) = 0,06

Сосна и ель вдоль волокон (500) = 0,32

Дуб поперек волокон (700) = 0,05

Дуб вдоль волокон (700) = 0,3

Фанера клееная (600) = 0,02

Песок для строительных работ (ГОСТ 8736) (1600) = 0,17

Минвата, каменная (25-50 кг/м3) = 0,37; Минвата, каменная (40-60 кг/м3) = 0,35

Минвата, каменная (140-175 кг/м3) = 0,32; Минвата, каменная (180 кг/м3) = 0,3

Гипсокартон 0,075; Бетон 0,03

Статья дана в ознакомительных целях

С целью ее разгромождения

Расчеты единиц паропроницаемости и сопротивления паропроницанию. Технические характеристики мембран.

Часто, вместо величины Q используют величину сопротивления паропроницанию, по нашему это Rп (Па*м2*ч/мг), зарубежное Sd (м). Сопротивление паропроницанию обратная величина Q. При том импортная Sd - та же Rп, только выраженная в виде эквивалентного диффузионного сопротивления паропроницанию слоя воздуха (эквивалентная диффузионная толщина воздуха).
Вместо того чтобы дальше рассуждать словами соотнесем Sd и Rп численно.
Что значит Sd=0,01м=1см?
Это значит что плотность диффузионного потока при перепаде dP составляет:
J=(1/Rп)*dP=Dv*dRo/Sd
Здесь Dv=2,1e-5м2/с коэффициент диффузии водяного пара в воздухе (взятый при 0градC)/
Sd - наше самое Sd, а
(1/Rп)=Q
Преобразуем правое равенство воспользовавшись законом идеального газа (P*V=(m/M)*R*T => P*M=Ro*R*T => Ro=(M/R/T)*P)и видим.
1/Rп=(Dv/Sd)*(M/R/T)
Отсюда пока не понятное нам Sd=Rп*(Dv*M)/(RT)
Чтобы получить верный результат нужно все представить в единицах Rп,
точнее Dv=0,076 м2/ч
M=18000 мг/моль - молярная масса воды
R=8,31 Дж/моль/К - универсальная газовая постоянная
T=273К - температура по шкале Кельвина, соответствующая 0градC где и будем вести расчеты.
Итак, все подставляя имеем:

Sd= Rп*(0,076*18000)/(8,31*273)=0,6Rп или наоборот:
Rп=1,7Sd.
Здесь Sd - тот самый импортный Sd [м], а Rп [Па*м2*ч/мг] - наше сопротивление паропроницанию.
Также Sd можно связать с Q - паропроницаемостью.
Имеем, что Q=0,56/Sd , здесь Sd [м], а Q [мг/(Па*м2*ч)].
Проверим полученные соотношения. Для этого возьме технические характеристики различных мембран и подставим.
Для начала возьму данные по Tyvek отсюда
Данные в итоге интересные, но не очень пригодные для проеврки формул.
В частности для мембраны Soft получаем Sd=0,09*0,6=0,05м. Т.е. Sd в таблице занижен в 2,5 раза или, соответсвенно завышен Rп.

Беру дальше данные с просторов интернета. По мембране Fibrotek
Воспользуюсь последней парой данных проницаемость, в данном случае Q*dP=1200 г/м2/сут, Rп=0,029 м2*ч*Па/мг
1/Rп=34,5 мг/м2/ч/Па=0,83 г/м2/сут/Па
Отсюда вытащим перепад абсолютной влажности dP=1200/0,83=1450Па. Данная влажность соответствует точке росы 12,5град или влажности 50% при 23град.

На просторах интернета также обнаружил на ином форуме фразу:
Т.е. 1740 нг/Па/с/м2=6,3 мг/Па/ч/м2 соответствует паропроницаемости ~250г/м2/сут.
Попробую получить такое соотношение сам. Упоминается, что величина в г/м2/сут измеряется в том числе при 23град. Берем полученную ранее величину dP=1450Па и имеем приемлемое схождение результатов:
6,3*1450*24/100=219 г/м2/сут. Ура-ура.

Итак, теперь мы умеем соотносить паропроницаемость которую можете встретить в таблицах и сопротивление паропроницанию.
Осталось еще убедится что полученное выше соотношение между Rп и Sd верно. Пришлось порыться и нашел мембрану для которой приведены обе величины (Q*dP и Sd), при том Sd конкретная величина, а не "неболее". Перфорированная мембрана на основе ПЭ пленки
И вот данные:
40,98 г/м2/сут => Rп=0,85 =>Sd=0,6/0,85=0,51м
Опять не сходится. Но в принципе результат недалек, что учитывая то что неизвестно при каких параметрах определена паропроницаемость вполне нормально.
Что интересно, по Tyvek получили несхождение в одну сторону, по IZOROL в другую. Что говорит о том что везде каким-то величинам доверять нельзя.

PS Буду признателен за поиски ошибок и сравнений с иными данными и нормативами.


Паропроницаемость стен – избавляемся от вымыслов.

В данной статье мы постараемся дать ответ на следующие частые вопросы: что такое паропроницаемость и нужна ли пароизоляция при строительстве стен дома из пеноблоков или кирпича. Вот только несколько типичных вопросов, которые задают наши клиенты:

« Среди множества различных ответов на форумах прочитал я о возможности заполнения зазора между кладкой из поризованной керамики и облицовочным керамическим кирпичом обычным кладочным раствором. Не противоречит ли это правилу уменьшения паропроницаемости слоёв от внутренних к наружным, ведь паропроницаемость цементно-песчаного раствора более чем в 1,5 раза ниже, чем у керамики ? »

Или вот еще: « Здравствуйте. Имеется дом из газобетонных блоков, хотелось бы если не облицевать весь, то хотя бы украсить дом клинкерной плиткой, но в некоторых источниках пишут что нельзя прямо на стену - она должна дышать, как быть??? А то вот некоторые дают схему что можно...Вопрос: Как керамическая фасадная клинкерная плитка крепится к пеноблокам

Для правильных ответов на такие вопросы нам необходимо разобраться в понятиях «Паропроницаемость» и «Сопротивление паропереносу».

Итак, паропроницаемость слоя материала - это способность пропускать или задерживать водяной пар в результате разности парциального давления водяного пара при одинаковом атмосферном давлении на обеих сторонах слоя материала, характеризуемая величиной коэффициента паропроницаемости или сопротивлением проницаемости при воздействии водяного пара. Единица измерения µ - расчетный коэффициент паропроницаемости материала слоя ограждающей конструкции мг / (м час Па). Коэффициенты для различных материалов можно посмотреть в таблице в СНИП II-3-79.

Коэффициент сопротивления диффузии водяного пара – это безразмерная величина, показывающая, во сколько раз чистый воздух более проницаем для пара, чем какой-либо материал. Сопротивление же диффузии определяют как произведение коэффициента диффузии материала на его толщину в метрах и имеет размерность в метрах. Сопротивление паропроницанию многослойной ограждающей конструкции, определяют по сумме сопротивлений паропроницанию составляющих ее слоев. Но в пункте 6.4. СНИП II-3-79 указано: «Не требуется определять сопротивление паропроницанию следующих ограждающих конструкций: а) однородных (однослойных) наружных стен помещений с сухим или нормальным режимом; б) двухслойных наружных стен помещений с сухим или нормальным режимом, если внутренний слой стены имеет сопротивление паропроницанию более 1,6 м2 ч Па/мг.». Кроме того, в а в том же СНИПе говорится:

«Сопротивление паропроницанию воздушных прослоек в ограждающих конструкциях следует принимать равным нулю независимо от расположения и толщины этих прослоек».

Так что же получается в случае многослойных конструкций? Для исключения накопления влаги в многослойной стене при движении пара изнутри помещения наружу каждый последующий слой должен обладать большей абсолютной паропроницаемостью, чем предыдущий. Именно абсолютной, т.е. суммарной, подсчитанной с учетом толщины определенного слоя. Поэтому говорить однозначно, что газобетон нельзя, к примеру, облицевать клинкерной плиткой, нельзя. В данном случае значение имеет толщина каждого слоя стеновой конструкции. Чем больше толщина, тем меньше абсолютная паропроницаемость. Чем выше значение произведения µ*d, тем менее паропроницаем соответствующий слой материала. Другими словами, для обеспечения паропроницаемости стеновой конструкции произведение µ*d должно увеличиваться от внешних (наружных) слоёв стены к внутренним.

К примеру, облицевать газосиликатные блоки толщиной 200 мм клинкерной плиткой толщиной 14 мм нельзя. При таком соотношении материалов и их толщин способность пропускать пары у отделочного материала будет на 70% меньше, чем у блоков. Если же толщина несущей стены будет 400 мм, а плитки по прежнему 14 мм, то ситуация будет противоположной и способность пропускать пары у плитки будет на 15% больше, чем у блоков.

Для грамотной оценки правильности устройства стеновой конструкции Вам понадобятся значения коэффициентов сопротивления диффузии µ, которые представлены в нижеследующей таблице:

Наименование материала

Плотность, кг/м3

Теплопроводность, Вт/м*К

Коэффициент сопротивления диффузии

Клинкерный кирпич полнотелый

2000

1,05

Клинкерный кирпич пустотелый (с вертикальными пустотами)

1800

0,79

Керамический кирпич полнотелый, пустотелый и пористый и блоки

газосилиткатные.

0,18

0,38

0,41

1000

0,47

1200

0,52


Если для фасадной отделки используется керамическая плитка, то проблемы с паропроницаемостью не будет при любом разумном сочетании толщин каждого слоя стены. Коэффициент сопротивления диффузии µ у керамической плитки будет в диапазоне 9-12, что на порядок меньше, чем у клинкерной плитки. Для возникновения проблемы с паропроницаемостью стены облицованной керамической плиткой толщиной 20 мм, толщина несущей стены из газосиликатных блоков плотностью D500 должна быть менее 60 мм, что противоречит СНиП 3.03.01-87 "Несущие и ограждающие конструкции" п.7.11 таблица №28, который устанавливает минимальную толщину несущей стены 250 мм.

Аналогичным образом решается вопрос о заполнении зазоров между различными слоями кладочных материалов. Для этого достаточно рассмотреть данную конструкцию стены, чтобы определит сопротивление паропереносу каждого слоя, включая и заполненный промежуток. Действительно, в многослойной конструкции стены каждый последующий слой по направлению из помещения на улицу должен быть более паропроницаем, чем предыдущий. Рассчитаем значение сопротивления диффузии водяного пара для каждого слоя стены. Это значение определяется по формуле: произведение толщины слоя d на коэффициент сопротивления диффузии µ. Например, 1-й слой - керамический блок. Для него выбираем значение коэффициента сопротивления диффузии 5, используя таблицу, приведенную выше. Произведение d х µ = 0,38 х 5= 1,9. 2-й слой - обычный кладочный раствор - имеет коэффициент сопротивления диффузии µ = 100. Произведение d х µ =0,01 х 100 = 1. Таким образом, второй слой - обычный кладочный раствор - имеет значение сопротивления диффузии меньше, чем первый, и не является паробарьером.

Учитывая вышесказанное давайте разберем предполагаемые варианты конструкции стен:

1. Несущая стена из KERAKAM Superthermo c облицовкой пустотелым клинкерным кирпичом FELDHAUS KLINKER.

Для упрощения расчетов примем, что произведение коэффициента сопротивления диффузии µ на толщину слоя материала d равно значению М. Тогда, М супертермо=0,38*6=2,28 метра, а М клинкера(пустотелый, формата NF)=0,115*70=8,05 метра. Поэтому при применении клинкерного кирпича необходим вентиляционный зазор:

Просмотров