Идеальный газ, определение и свойства.

Масса и размеры молекул.

Средний диаметр молекулы ≈ 3 · 10 -10 м.

Средний объём пространства, занимаемого молекулой ≈ 2,7 · 10 -29 м 3 .

Средняя масса молекулы ≈ 2,4 · 10 -26 кг.

Идеальный газ.

Идеальным называют газ, молекулы которого можно считать материальными точками и взаимодействие которых друг с другом осуществляется только путём столкновений.

Теплообмен.

Теплообмен - процесс обмена внутренней энергией соприкасающихся тел, имеющих разные температуры. Энергия, переданная телом или системой тел в процессе теплообмена, есть количество теплоты Q

Нагревание и охлаждение.

Нагревание и охлаждение возникают благодаря получению одним телом количества теплоты Q нагр и потери другим количества теплоты Q охл. В замкнутой системе

Количество теплоты:

m - масса тела, Δt - измение температуры при нагревании (охлаждении), c - удельная теплоёмкость - энергия, необходимая для нагревания тела массой в 1 кг на 1° C.

Единица удельной теплоёмкости - 1 Дж/кг.

Плавление и кристаллизация

λ - удельная теплота плавления, измеряется в Дж/кг.

Парообразование и конденсация:

r - удельная теплота парообразования, измеряется в Дж/кг.

Сгорание

k - удельная теплота сгорания (теплоотводная способность), измеряется в Дж/кг.

Внутренняя энергия и работа.

Внутренняя энергия тела может измениться не только за счёт теплопередачи, но и за счёт совершения работы:

Работа, совершаемая самой системой, положительна, внешними силами - отрицательна.

Основы молекулярно-кинетической теории идеального газа

Основное уравнение молекулярно-кинетической теории идеального газа:

p - давление, n - концентрация молекул, m 0 - масса молекулы.

Температура.

Температурой называется скалярная физическая величина, характеризующая интенсивность теплового движения молекул изолированной системы при тепловом равновесии и пропорциональная средней кинетической энергии поступательного движения молекул.

Температурные шкалы.

ВНИМАНИЕ!!! В молекулярной физике температура берётся в градусах по Кельвину. При любой температуре t по Цельсию, значение температуры T по Кельвину выше на 273 градуса:

Связь температуры газа с кинетической энергией движения его молекул:

k - постоянная Больцмана; k = 1,38 · 10 -23 Дж/К.

Давление газа:

Уравнение состояния идеального газа:

N = n · V - общее число молекул.

Уравнение Менделеева-Клайперона:

m - масса газа, M - масса 1 моля газа, R - универсальная газовая постоянная:

Какие погрешности возникают при измерениях в Лабораторной работе № 4 «Определение удельной теплоты кристаллизации (плавления) и изменения энтропии при кристаллизации олова»? Объясните их причины.

В нашей лабораторной работе № 4 возникают такие погрешности, как состав олова, комнатная температура, а так же на результат может повлиять долгое нагревание олова. Причины: состав олова может содержать какие-либо примеси, вследствие чего это может повлиять на результат измерений. Так же погрешностью можно назвать комнатную температуру, т.к. каждый раз делая данную лабораторную работу, мы используем разную температуру окружающей среды в лаборатории.

Какой газ называется идеальным? Запишите уравнение состояния идеального газа и объясните его.

Идеальный газ- это газ, молекулы которого рассматриваются как материальные точки взаимодействия между собой по законам соударения упругих шаров. Т.е. модели идеального газа пренебрегают собственным объемом молекул и силами взаимодействия между ними. Формула: или PV= . Эта формула дает связь между макропараметрами вещества. f(P,V,T)=0 общий вид уравнения состояния.

Процесс –переход системы из одного состояния в другое.

Уравнение, устанавливающее связь между давлением, объемом и температурой газа было получено в середине XIX века французским физиком Б. Клапейроном, в форме (PV=RT) оно было впервые записано Д. И. Менделеевым. Поэтому уравнение состояния газа называется уравнением Клапейрона–Менделеева.

Газ может участвовать в различных тепловых процессах, при которых могут изменяться все параметры, описывающие его состояние (P, V и T). Если процесс протекает достаточно медленно, то в любой момент система близка к своему равновесному состоянию. Такие процессы называются квазистатическими. В привычном для нас масштабе времени эти процессы могут протекать и не очень медленно. Например, разрежения и сжатия газа в звуковой волне, происходящие сотни раз в секунду, можно рассматривать как квазистатический процесс. Квазистатические процессы могут быть изображены на диаграмме состояний (например, в координатах P, V) в виде некоторой траектории, каждая точка которой представляет равновесное состояние.



В случае постоянной массы газа уравнение можно записать в виде: Последнее уравнение называют объединённым газовым законом . Из него получаются законы Бойля - Мариотта, Шарля и Гей-Люссака.

29. Сформулируйте первое начало термодинамики в общем, виде и для каждого изопроцесса. Начертите графики изопроцессов в координатах ( pV) , ( pT) , ( VT) .

Первое начало термодинамики- это применение закона сохранение и превращение энергии к явлениям, изучаемым термодинамикой.Первое начало термодинамики - один из трёх основных законов термодинамики, представляет собой закон сохранения энергии для термодинамических систем.

Первое начало термодинамики было сформулировано в середине XIX века в результате работ немецкого учёного Ю. Р. Майера, английского физика Дж. П. Джоуля и немецкого физика Г. Гельмгольца. Первое начало термодинамики часто формулируют как невозможность существования вечного двигателя первого рода, который совершал бы работу, не черпая энергию из какого-либо источника.

Энергия – это общая количественная мера всех процессов и видов взаимодействия в природе, подчиняющаяся закону сохранения. Энергия имеет определенное значение в любом состоянии системы, поэтому dU явл-ся функцией состояния.Функция состояния- это функция, которая в заданном состоянии системы имеет вполне определенное значение, не зависящее от того, каким путем или способом система в это состояние приведена. Характеризуется полным дифференциалом. Ф-я процесса- функции, значение которой определяется видом процесса, в результате которого система изменила свое состояние. К функциям процесса относятся Работа, Кол-во теплоты.



Первое начало термодинамики:

1) при изобарном процессе (p=const)-Закон Гей-Люссака. При P=const- Диаграмма этого процесса (изобара) в координатах р, V изображается прямой, параллельной оси V. При изобарном процессе работа газа при расширении объема от до равна и определяется площадью прямоугольника.

2)При изотермическом процессе - процесс изменения состояния термодинамической системы при постоянной температуре (T=const) PV=const-уравнение Бойля-Мариотта. При T=const - dU=0; Диаграмма этого процесса (изотерма)в координатах р, V представляет собой гиперболу, расположенную на диаграмме тем выше, чем выше температура, при которой происходил процесс.

3)При изохорном процессе(V=const)-процесс изменения состояния термодинамической системы при постоянном объёме (V=const). Для идеальных газов изохорический процесс описывается законом Шарля: для данной массы газа при постоянном объёме, давление прямо пропорционально температуре:

При V=const-

Идеальный газ - математическая модель газа, в которой предполагается, что потенциальной энергией молекул можно пренебречь по сравнению с их кинетической энергией. Между молекулами не действуют силы притяжения или отталкивания, соударения частиц между собой и со стенками сосуда абсолютно упруги, а время взаимодействия между молекулами пренебрежимо мало по сравнению со средним временем между столкновениями.

2. Что такое степени свободы молекул? Как число степеней свободы связано с коэффициентом Пуассона γ?

Числом степеней свободы тела называется число независимых координат, которые необходимо задать для того, чтобы полностью определить положение тела в пространстве. Так, например, материальная точка, произвольно движущаяся в пространстве, обладает тремя степенями свободы (координаты x, y, z).

Молекулы одноатомного газа можно рассматривать как материальные точки на том основании, что масса такой частицы (атома) сосредоточена в ядре, размеры которого очень малы (10 -13 см). Поэтому молекула одноатомного газа может иметь лишь три степени свободы поступательного движения.

Молекулы, состоящие из двух, трех и большего числа атомов, не могут быть уподоблены материальным точкам. Молекула двухатомного газа в первом приближении представляет собой два жестко связанных атома, находящихся на некотором расстоянии друг от друга

3. Чему равна теплоемкость идеального газа при адиабатическом процессе?

Теплоемкостью называется величина, равная количеству теплоты, которое нужно сообщить веществу, чтобы повысить его температуру на один кельвин.

4. В каких единицах измеряются в системе си давление, объем, температура, молярные теплоемкости?

Давление – кПа, объем – дм 3 , температура – в Кельвинах, молярные теплоемкости – Дж/(мольК)

5. Что такое молярные теплоемкости Ср и Сv?

У газа различают теплоемкость при постоянном объеме С v и теплоемкость при постоянном давлении С р.

При постоянном объеме работа внешних сил равна нулю, и все сообщаемое газу извне количество теплоты идет целиком на увеличение его внутренней энергии U. Отсюда молярная теплоемкость газа при постоянном объеме С v численно равна изменению внутренней энергии одного моля газа ∆Uпри повышении его температуры на 1К:

∆U=i/2*R(T+1)-i/2RT=i/2R

Таким образом, молярная теплоемкость газа при постоянном объеме

С v =i/2R

удельная теплоемкость при постоянном объеме

С v =i/2*R/µ

При нагревании газа при постоянном давлении газ расширяется, сообщаемое ему извне количество теплоты идет не только на увеличение его внутренней энергии U, но и на совершение работыAпротив внешних сил. Следовательно, теплоемкость газа при постоянном давлении больше теплоемкости при постоянном объеме на величину работыA, которую совершает один моль газа при расширении, происходящем в результате повышения его температуры на 1Kпри постоянном давленииP:

С р = С v +A

Можно показать, что для моля газа работа A=R, тогда

С р = С v +R=(i+2)/2*R

Пользуясь соотношением между удельными в молярными теплоемкостями, находим для удельной теплоемкости:

С р = (i+2)/2*R

Непосредственное измерение удельных и молярных теплоемкостей затруднительно, так как теплоемкость газа составит ничтожную долю теплоемкости сосуда, в котором находится газ, и поэтому измерение будет чрезвычайно неточно.

Проще измерить отношение величии С р / С v

γ=С р / С v =(i+2)/i.

Это отношение зависит только от числа степеней свободы молекул, из которых состоит газ.

ОПРЕДЕЛЕНИЕ

Идеальный газ - это наиболее простая модель системы, состоящей из большого количества частиц.

Это газ, который состоит из материальных точек, имеющих конечную массу, но не имеющих объема. Данные частицы не могут взаимодействовать на расстоянии. Столкновения частиц идеального газа описываются при помощи законов абсолютно упругого соударения шаров. Следует отметить, что имеются в виду законы столкновения именно шаров, так как точечные частицы испытывают только лобовые столкновения, которые не могут изменять направления скоростей на разные углы.

Идеальный газ существует только в теории. В реальной жизни он не может существовать в принципе, так как точечные молекулы и отсутствие их взаимодействия на расстоянии аналогично их существованию вне пространства, то есть их не существованию. Ближе всех по своим свойствам к модели идеального газа приближаются газы при малом давлении (разреженные газы) и (или) высокой температуре. Модель идеального газа подходит для изучения методов исследования систем многих частиц, знакомства с соответствующими понятиями.

В промежутках между столкновениями молекулы идеального газа движется по прямым. Законы столкновений и соударений о стенки сосудов, в которых находится газ, известны. Следовательно, если знать положения и скорости всех частиц идеального газа в какой-то момент времени, то можно найти их координаты и скорости в любой другой момент времени. Эта информация наиболее полно описывает состояние системы частиц. Однако количество частиц столь велико, что динамическое описание системы многих частиц непригодно для теории и бесполезно для практики. Это означает, что для изучения систем многих частиц информация должна быть обобщена, и ее относят не к отдельным частицам, а к их большим совокупностям.

Давление идеального газа

При помощи модели идеального газа удалось качественно и количественно объяснить давление газа на стенки сосуда, в котором он находится. Газ оказывает давление на стенки сосуда потому, что его молекулы взаимодействуют со стенками как упругие тела по законам классической механики. Количественно давление (p) идеального газа получили равным:

где — средняя кинетическая энергия поступательного движения молекул газа; — концентрация молекул газа (N - число молекул газа в сосуде; V - объем сосуда).

Законы идеальных газов

Идеальным называют газы, которые строго подчиняются законам Бойля - Мариотта и Гей - Люссака.

Закон Бойля - Мариотта. Для постоянной массы (m) идеального газа при постоянной температуре (T) произведение давления (p) газа на его объем (V) является постоянной величиной для любых состояний рассматриваемого вещества:

Закон Гей-Люссака. Для постоянной массы газа при неизменном давлении выполняется соотношение:

В поведении реальных газов наблюдают отступления от законов Бойля — Мариотта и Гей-Люссака, и эти отступления различны для разных газов.

Для идеального газа выполняется закон Шарля. Который говорит о том, что для постоянной массы газа, при постоянном объеме, отношение давления газа к температуре, не изменяется:

Для связи параметров идеального газа, часто используют уравнение состояния, которое носит имена двух ученых Клапейрона и Менделеева:

где — молярная масса газа; - универсальная газовая постоянная.

Закон Дальтона. Давление смеси идеальных газов (p) равно сумме парциальных давлений () рассматриваемых газов:

При этом уравнение состояния смеси идеальных газов имеет вид (2), как будто газ является химически однородным.

Примеры решения задач

ПРИМЕР 1

Задание Какие процессы в неизменной массе идеального газа представляют графики (рис.1)?

Решение Рассмотрим процесс изображенный графиком под номером 1. Мы видим, что произведение , по условию газ идеальный, масса газа постоянная, следовательно, это изотермический процесс.

Перейдем ко второму графику. Из графика мы можем сделать вывод о том, что:

где С - некоторая постоянна величина. Разделим правую и левую части выражения (1.1) имеем:

Мы получили, что давление постоянно. Так как , имеем изобарный процесс.

Ответ 1- изотермический процесс. 2- изобарный процесс.

ПРИМЕР 2

Задание Как будет изменяться давление идеального газа в процессе при котором масса газа постоянна, объем газа увеличивают, а температуру уменьшают?
Решение За основу решения задачи примем уравнение Клапейрона - Менделеева:

В первой части издания представлены шесть лекций, посвященных раскрытию физического смысла основных законов и понятий механики.

Вторая часть продолжает курс лекций по физике и содержит девять лекций по молекулярной физике и термодинамике.

Предметом изучения молекулярной физики является движение больших совокупностей молекул. При изучении используются статистиче­ский и термодинамический методы.

Молекулярная физика исходит из представлений о молекулярном строении вещества. Поскольку число частиц в макросистеме велико, зако­номерности вней имеют статистический, т.е. вероятностный, характер. На основе определенных моделей молекулярная физика позволяет объяс­нить наблюдаемые свойства макросистем (систем, состоящих из очень большого числа частиц) как суммарный эффект действий отдельных мо­лекул. При этом используется статистический метод, в котором нас инте­ресуют не действия отдельных молекул, а средние значения определенных величин.

В термодинамике используют понятия и физические величины, от­носящиеся к системе в целом, например, объем, давление и температура. Термодинамика основана на общих принципах, или началах, которые представляют собой обобщение опытных фактов.

Термодинамический и статистический методы изучения макросис­тем дополняют друг друга. Термодинамический метод позволяет изучать явления без знания их внутренних механизмов. Статистический метод по­зволяет понять суть явлений, установить связь поведения системы в целом с поведением и свойствами отдельных частиц.

Цель автора, как и в первой части представленного издания, - сде­лать для начинающего студента фактически доступными основные поня­тия и закономерности молекулярной физики, порой весьма непростые. Студенту нужно не «зазубривать» материал, а постараться понять, раз­мышлять, проверить себя по вопросам для самоконтроля после каждой лекции, а также прорешать соответствующие задачи, например из пособия . Максимальное внимание должно быть уделено физическому смыслу изучаемого материала.

ВНИМАНИЕ! ПРЕДЛАГАЕМОЕ ИЗДАНИЕ ОБЛЕГЧАЕТ РАБОТУ СТУДЕНТА, НО НЕ ЗАМЕНЯЕТ САМИ ЛЕКЦИИ В АУДИТОРИИ!

Молекуляная физика

Лекция №7

Молекулярно-кинетическая теория (мкт) идеального газа

    Понятие идеального газа. Молекулярно-кинетическое толкование температуры. Макроскопические параметры системы.

    Число степеней свободы. Закон равнораспределение энергии. Внутренняя энергия идеального газа.

    Давление газа с точки зрения молекулярно-кинетической теории идеального газа (основное уравнение молекулярно-кинетической теории).

    Уравнение состояния идеального газа (уравнение Клапейрона-Менделеева).

1. Понятие идеального газа.

Идеальным называется газ, взаимодействие, между молекулами которого пренебрежимо мало и состояние которого описывается уравнением Клапейрона-Менделеева.

Модель идеального газа .

1. Собственный объём молекул газа пренебрежимо мал по сравнению с объёмом сосуда.

2. Между молекулами газа отсутствует силы взаимодействия .

3. Столкновения молекул газа между собой и со стенками сосуда абсолютно упругие .

Взаимодействие между молекулами всякого газа становится пренебрежимо слабым при малых плотностях газа , при большом разрежении. Такие газы как воздух, азот, кислород, даже при обычных условиях, т.е. при комнатной температуре и атмосферном давлении мало отличаются от идеального газа. Особенно близки к идеальному газу гелий и водород.

Не следует думать, что взаимодействие между молекулами идеального газа вовсе отсутствует . Напротив, его молекулы сталкиваются друг с другом и эти столкновения существенны для установления определённых тепловых свойств газа . Но столкновения проходят настолько редко , что большую часть времени молекулы движутся как свободные частицы .

Именно столкновения между молекулами позволяют ввести такой параметр как температура. Температура тела характеризует энергию, с которой движутся его молекулы. Для идеального газа в равновесных условиях абсолютная температура пропорциональна средней энергии поступательного движения молекул .

Определение . Макроскопической называется система, образованная огромным числом частиц (молекул, атомов). Параметры, характеризующие поведение системы (например, газа), как целого, называется макропараметрами . Например, давление Р , объём V и температура Т газа – макропараметры.

Параметры, характеризующие поведение отдельных молекул (скорость, масса и т.п.) называется микропараметрами .

Просмотров