Сущность процесса самовозгорания. Самовозгорание «Вода» зажигает костер

С увеличением длинны углеводородной цепи в гомологических рядах температура самовоспламенения уменьшается.

В связи с этим, возникает проблема: с одной стороны температура самовоспламенения сильно зависит от множества факторов, с другой – необходимо все-таки как-то анализировать пожарную опасность процессов, аппаратов или технологий с обращением ГГ или ГЖ и предусматривать меры профилактики.

Чтобы исключить этот отрицательный момент, в нашей стране и за рубежом законодательным путем установлены одинаковые для всех лабораторий условия испытаний, зафиксированные в ГОСТе 12.1.044. Следует отметить, что методика эта универсальна и применяется для определения температуры самовоспламенения газов, жидкостей и твердых горючих веществ.

Сущность метода определения температуры самовоспламенения заключается во введении определенной массы вещества в нагретый объем и оценке результатов испытания. Изменяя температуру испытания, находят ее минимальное значение, при котором происходит самовоспламенение вещества.

4. Механизм процесса теплового самовозгорания веществ

Всем известно, что большие проблемы доставляют пожары торфянников, взрывы в угольных шахтах и т.п. Сложность их предотвращения заключается в том, что часто возгорания происходят без внешних источников зажигания. Сюда же можно отнести возгорание стогов сена, зернохранилищ и многое - многое другое.

В некоторых случаях горение твердых горючих материалов может возникнуть за счет самонагревания, которое обусловлено происходящими в веществах физическими, химическими и биологическими процессами при низких (до 70 °С) температурах (окисление, разложение, адсорбция, конденсация, жизнедеятельность микроорганизмов и т.д.). Этот процесс называетсясамовозгоранием.

Самовозгорание -резкое увеличение скорости экзотермических процессов в веществе, приводящее к возникновению очага горения.

Самовозгорание веществ и материалов часто становится причиной пожара на промышленных объектах.

Выделение из всех горючих веществ, группы самовозгорающихся объясняется их повышенной опасностью по сравнению с другими горючими веществами и необходимостью проведения дополнительных профилактических мероприятий, в связи с чем уделяется особое внимание изучению этих процессов.

Все горючие вещества, находящиеся в соприкосновении с воздухом, при определенных температурах начинают окисляться. Этот процесс сопровождается выделением тепла. В некоторых случаях отвод выделяющегося тепла сильно ограничен, и при определенном соотношении скоростей выделения и отвода тепла, возможно самонагревание горючего материала.

Самонагревание некоторых веществ может происходить не только в результате окисления, но и от других экзотермических реакций (разложение), а также от ряда физических и биологических явлений.



Саморазогрев веществ может происходить по следующим причинам:

а) протекание химических экзотермических реакций

б) биологические процессы жизнедеятельности микроорганизмов (бактерии, растительные клетки и др.)

в) физические процессы с выделением тепла адсорбции и конденсация.

При определенных условиях, процесс самонагревания может привести к возникновению горения, аналогично как при явлении самовоспламенения.

Отличие самовозгорания от самовоспламенения заключается в следующем:

1. Самовозгорание происходит в твердых и конденсированных веществах, в то время как самовоспламенение в – газо- паро-воздушных системах.

2. Процессы самонагревания при самовозгорании начинаются при «низких» температурах (до 70°С), а самовоспламенение происходит при относительно высоких (более 150°С)

3. Самовозгорание проходит через стадию тления.

4. При самовозгорании период индукции может проходить очень длительное время, при самовоспламенении же - секунды

К самовозгоранию склонно большое количество веществ и материалов. Их делят на три группы:

1. вещества, самовозгорающиеся на воздухе. К этой группе относятся вещества: масла, жиры, белый фосфор, порошки металлов, сульфиды железа, ископаемое топливо, растительные продукты.

2. вещества, самовозгорающиеся при действии на них воды. К этой группе относятся вещества: щелочные металлы, гидриды щелочных металлов, карбиды щелочных металлов, карбид кальция, окись кальция, перекиси, силициды и гидросульфит натрия.

3. самовозгорающиеся смеси. В составе таких смесей обязательными компонентами являются окислитель и горючее вещество. Окислители: кислород сжатый, хлор, бром, фтор, азотная кислота, перекись натрия и бария, марганцево-кислый калий, хромовый ангидрид, селитры, хлораты, перхлораты и хлорная известь. Горючие вещества: сахар, сера, глицерин, спирты и др.

Современная теория теплового самовозгорания веществ и материалов базируется на представлении о блуждающих "горячих точках", которые формируются по определенным закономерностям. Представим дисперсную систему ограниченных размеров (кипы ваты, хлопка, мешки с рыбной мукой и т.п.). Система и окружающая среда имеют температуру Т о, а внутри ее образовалась небольшая зона, в которой начались окислительные процессы.

Схема возникновения "горячей точки"

В результате окисления стала выделяться теплота, которая распространяется во все стороны (конвекцию учитывать не будем). Температура в реакционной зоне будет постепенно расти и достигнет значений, при которых начнутся процессы термической деструкции твердого материала с выделением продуктов разложения. Последние будут конденсироваться и адсорбироваться на поверхности вещества. Обязательным условием такого процесса является наличие кислорода и развитой поверхности горючего вещества. Чем больше дисперсность материала, тем больше его удельная поверхность, а значит и выше скорость процессов окисления, разложения, конденсации и адсорбции, в результате которых выделяется и накапливается внутри материала теплота:

q + = q р + q дестр + q конд + q адс,

где q + - тепловой эффект реакций окисления;

q дестр - тепловой эффект реакций термической деструкции;

q конд - теплота конденсации продуктов разложения;

q ад c - теплота адсорбции продуктов реакций.

Если скорость теплоотвода будет ниже скорости тепловыделения в зоне реакций, то начнется процесс самонагревания внутри объема вещества. С увеличением температуры данный процесс будет ускоряться за счет увеличения скорости реакций и интенсивности тепловыделения. Если кислорода в зоне реакций достаточно, а отвод теплоты в окружающую среду затруднен, то непрерывный процесс самонагревания может перейти в качественно новую стадию - самовозгорание. Процессы самонагревания и самовозгорания развиваются, как правило, в диффузионной области, и скорость их зависит от скорости поступления (диффузии) кислорода снаружи в зону реакции. Самовозгоранию подвержены легкоокисляющиеся пористые и волокнистые вещества и материалы, имеющие в себе большой запас молекулярного кислорода.

Структура горючих материалов по объему неоднородна: разная плотность упаковки, плотность, влажность и т.д. Это приводит к тому, что в большом объеме материала зона реакции будет перемещаться с разной скоростью, в разных направлениях. В той части, где теплоты отводится меньше, температура будет выше. Этот участок будет как бы подвижным тепловым центром реакционной зоны, ееблуждающей "горячей точкой". Максимальная температура будет наблюдаться в наиболее заглубленной части материала.

Первоначальный период самовозгорания часто бывает незаметен снаружи, так как продукты термоокислительной деструкции полностью адсорбируются внутри вещества. В объеме материала, как правило, возникают одновременно несколько "горячих точек", которые по мере развития процесса сливаются друг с другом с образованием глухих, не сообщающихся с поверхностью вещества прогаров.Обнаружение таких прогаров при исследовании пожара является однозначным признаком его возникновения в результате самовозгорания.

Причиной возникновения "горячих точек" в некоторых материалах растительного происхождения являютсямикробиологические процессы. В органических веществах, подобных зерну, шерсти, рыбной муке, сену, торфу и т.п.,вследствие жизнедеятельности микроорганизмов выделяется теплота, которая аккумулируется в объеме материала. При достижении температуры 60-70 °С микроорганизмы погибают. Однако к этому времени уже формируются блуждающие "горячие точки", и начинается процесс теплового самовозгорания.

Анализ приведенного выше выражения показывает, что условия самовозгорания зависят от химической природы материала, его формы и массы, начальных и граничных условий теплообмена с окружающей средой. Для каждого сыпучего или волокнистого материала существуют свои критические условия самовозгорания. Расчетные методы их определения отсутствуют, хотя и накоплен большой экспериментальный материал, на базе которого разрабатываются мероприятия по предотвращению пожаров от самовозгорания. Для этого, прежде всего, необходимы знания параметров пожарной опасности веществ и материалов в конкретных условиях их переработки, хранения и транспортировки. К этим параметрам относятся температура самонагревания, температура тления и условия теплового самовозгорания. Указанные параметры определяются по специальным экспериментальным методикам, изложенным в ГОСТе 12.1.044.

Температура самонагревания - это температура, начиная с которой в веществе или материале, находящемся в атмосфере воздуха, возникают практически различимые процессы окисления, разложения и т.п. Температура самонагревания является самой низкой температурой вещества, нагревание при которой может потенциально привести к самовозгоранию. Безопасной температурой длительного нагрева вещества считается температура не выше 90% от температуры самонагревания.

Температура тления при самовозгорании - это температура твердого вещества, при которой происходит резкое увеличение скорости экзотермических реакций окисления твердых продуктов разложения, приводящее к возникновению очага тления.

Условия теплового самовозгорания - это экспериментально выявленная зависимость между температурой окружающей среды, массой вещества и временем до момента его самовозгорания. Методика испытаний позволяет на малых образцах получить достаточно надежные и пригодные для практики аналитические выражения для критических условий теплового самовозгорания t c = f(S) и t c = f(r) (С.Н.Таубкин и В.Т.Монахов). Образец помещают в сетчатые корзиночки кубической формы с длиной ребра от 35 до 200 мм (всего шесть размеров), нагревают в воздушном термостате в изотермических условиях и для каждого размера определяют минимальную температуру, при которой образец самовозгорается. По результатам испытаний строят графики зависимости логарифма температуры самовозгорания от логарифма удельной поверхности корзиночки, а также от логарифма времени до самовозгорания (рис.2.2). Полученные на графиках прямые аппроксимируют в виде уравнений:

lg Т c = А р + n р ×lg S (1) условия теплового

lg Т c = A s + n s ×lg t (2) самовозгорания,

где А р, A s , n р, n s - коэффициенты, определяемые из графиков на рис.2.2. Эти уравнения позволяют легко рассчитать время и температуру самовозгорания для веществ, находящихся в таре, ссыпанных в кучи, сложенных в штабель и т.п.

Графики зависимости температуры Т с от удельной

поверхности S и от времени t до самовозгорания образца

Горение – сложный физико-химический процесс превращения компонентов горючей смеси в продукты сгорания с выделением теплового излучения, света и лучистой энергии. Приближенно можно описать природу горения как бурно идущее окисление.
Дозвуковое горение (дефлаграция) в отличие от взрыва и детонации протекает с низкими скоростями и не связано с образованием ударной волны. К дозвуковому горению относят нормальное ламинарное и турбулентное распространения пламени, к сверхзвуковому - детонацию.

Горение подразделяется на тепловое и цепное. В основе теплового горения лежит химическая реакция, способная протекать с прогрессирующим самоускорением вследствие накопления выделяющегося тепла. Цепное горение встречается в случаях некоторых газофазных реакций при низких давлениях.

Условия термического самоускорения могут быть обеспечены для всех реакций с достаточно большими тепловыми эффектами и энергиями активации.

Горение может начаться самопроизвольно в результате самовоспламенения либо быть инициированным зажиганием. При фиксированных внешних условиях непрерывное горение может протекать в стационарном режиме, когда основные характеристики процесса – скорость реакции, мощность тепловыделения, температура и состав продуктов – не изменяются во времени, либо в периодическом режиме, когда эти характеристики колеблются около своих средних значений. Вследствие сильной нелинейной зависимости скорости реакции от температуры, горение отличается высокой чувствительностью к внешним условиям. Это же свойство горения обусловливает существование нескольких стационарных режимов при одних и тех же условиях (гистерезисный эффект).

Различают следующие виды горения: самовоспламенение, самовозгорание, вспышка, воспламенение, взрыв.

Самовоспламенение – горение, возникающее от внешнего нагревания вещества до определенной температуры без не посредственного соприкосновения горючего вещества с пламенем внешнего источника горения.

Самовозгорание – горение твердых веществ, возникающее от нагревания их под влиянием процессов, происходящих внутри самого вещества. Происходящие физические или химические процессы внутри вещества связаны с образованием тёпла, которое ускоряет процесс окисления, переходящий в горение открытым огнем.

Вспышка – быстрое, но, сравнительно со взрывом, кратко временное сгорание смеси паров горючего вещества с воздухом или кислородом, возникающее от местного повышения темпера туры, которое может быть вызвано электрической искрой или прикосновением к смеси пламени или накаленного тела. Температура, при которой происходит вспышка, называется температурой вспышки. Явление вспышки схоже с явлением взрыва, но, в отличие от последнего, оно происходит без сильного звука и не оказывает разрушительного действия.

Воспламенение – стойкое возгорание смеси паров и газов горючего вещества от местного повышения температуры, которое может быть вызвано прикосновением пламени или накаленного тела. Воспламенение может длиться до тех пор, пока не сгорит весь запас горючего вещества, причем парообразование при этом происходит за счет тепла, выделяющегося при сгорании.

Воспламенение отличается от вспышки своей продолжительностью. Кроме того, при вспышке тепловыделение в каждом участке достаточно для поджигания смежного участка уже готовой горючей смеси, но недостаточно для пополнения ее путем испарения новых количеств горючего; поэтому, истратив запас горючих паров, пламя гаснет и вспышка на этом кончается, пока снова не накопятся горючие пары и не получат местного перегрева. При воспламенении же парообразующее вещество бывает доведено до такой температуры, что теплоты сгорания накопившихся паров оказывается достаточно для восстановления запаса горючей смеси.

Взрыв – мгновенное сгорание или разложение вещества, сопровождающееся выделением огромного количества газов, которые мгновенно расширяются и вызывают резкое повышение давления в окружающей среде. При соприкосновении с воздухом: газообразные продукты разложения некоторых веществ обладают способностью воспламеняться, что не только приводит к разрушениям от действия взрывной волны, но и вызывает большие пожары.
Так же выделяют самораспространяющийся высокотемпературный синтез (СВС), – химический процесс, протекающий с выделением тепла в автоволновом режиме типа горения и приводящий к образованию твердых продуктов. СВС представляет собой режим протекания экзотермической реакции, в котором тепловыделение локализовано в слое и передается от слоя к слою путем теплопередачи.

Чтобы произошло возгорание, необходимы три фактора:

  1. тепло
  2. кислород
  3. горючее вещество (топливо)

Смысл вопроса в том, что только тогда, когда эти три составляющих налицо в надлежащей пропорции - может возникнуть пламя.

Существует так же беспламенное горение. В отличие от обычного горения, когда наблюдаются зоны окислительного пламени и восстановительного пламени, возможно создание условий для беспламенного горения. Примером может служить каталитическое окисление органических веществ на поверхности подходящего катализатора, например, окисление этанола на платиновой черни.

Пожар - это неконтролируемое горение вне специального очага.

1. Горючее вещество (топливо)
Горючие вещества (материалы) – вещества (материалы), способные к взаимодействию с окислителем (кислородом воздуха) в режиме горения. По горючести вещества (материалы) подразделяют на три группы:

    негорючие вещества и материалы не способные к самостоятельному горению на воздухе;

    трудногорючие вещества и материалы – способные гореть на воздухе при воздействии дополнительной энергии источника зажигания, но не способные самостоятельно гореть после его удаления;

    горючие вещества и материалы – способные самостоятельно гореть после воспламенения или самовоспламенения самовозгорания.

Горючие вещества (материалы) – понятие условное, так как в режимах, отличных от стандартной методики, негорючие и трудногорючие вещества и материалы нередко становятся горючими.
Среди горючих веществ имеются вещества (материалы) в различных агрегатном состоянии: газы, пары, жидкости, твёрдые вещества (материалы), аэрозоли. Практически все органические химические вещества относятся к горючим веществам. Среди неорганических химических веществ также имеются горючие вещества (водород, аммиак, гидриды, сульфиды, азиды, фосфиды, аммиакаты различных элементов).
Горючие вещества (материалы) характеризуются показателями пожарной опасности. Введением в состав этих веществ (материалов) различных добавок (промоторов, антипиренов, ингибиторов) можно изменять в ту или иную сторону показатели их пожарной опасности.

2. Окислитель
Окислитель является второй стороной треугольника горения. Обычно в качестве окислителя при горении выступает кислород воздуха, однако могут быть и другие окислители - окислы азота и т.п.
Критическим показателем для кислорода воздуха как окислителя, является его концентрация в воздушной среде закрытого судового помещения в объемных пределах выше 12-14%. Ниже этой концентрации горение абсолютного большинства горючих веществ не происходит. Однако некоторые горючие вещества способны гореть и при более низких концентрациях кислорода в окружающей газовоздушной среде.

3. Температура возгорания (тепло)
Есть много понятий, применяемых к температурам, при которых возможно возгорание. Главнейшие из них:
Температура вспышки - наименьшая температура, при которой вещество выделяет достаточно горючих для воспламенения паров, при воздействии открытым пламенем, но горение не продолжается.
Температура воспламенения - наименьшая температура, при которой вещество дает достаточно горючих испарений для возгорания и продолжения горения при приложении открытого пламени.
Примечание. Можно заметить, что разница между температурой вспышки и температурой горения в том, что в первом случае происходит мгновенная вспышка, а во втором температура должна быть достаточно высока, чтобы производить достаточно горючих паров для горения, независимо от источника возгорания.
Самовоспламенение - это быстрое самоускорение экзотермической химической реакции, приводящее к появлению яркого свечения - пламени. Самовоспламенение происходит в результате того, что при окислении материала кислородом воздуха образуется тепла больше, чем успевает отводиться за пределы реагирующей системы. Для жидких и газообразных горючих веществ это возникает при критических параметрах температуры и давления.

Важно полностью представлять, как обычно развивается пожар. Если исключить взрывы и вспышки, то процесс горения можно разделить на четыре следующих периода:

  1. период загорания
  2. развития пожара
  3. период горения
  4. период затухания

В этой связи показательно, что обычно пожар распространяется вверх очень быстро, в сторону - с относительно малой скоростью, а вниз - очень медленно.

Это можно проиллюстрировать так: Если горение возникло (треугольник замкнулся), действия по тушению пожара должны быть направлены на то, чтобы вывести показатели треугольника (хотя бы один) за переделы критических величин - разорвать треугольник горения. Это и есть теоретическая основа горения и тушения.

В зависимости от агрегатного состояния горючих компонентов (окислителя или горючего) различают три вида горения.

    Гомогенное горение – горение газов и парообразных горючих веществ в среде газообразного окислителя.

    Гетерогенное горение – горение жидких и твердых топлив (горючих веществ) в среде газообразного окислителя. Разновидностью гетерогенного горения является горение жидких капель топлива.

    Горение взрывчатых веществ и порохов .

По скорости распространения пламени горение подразделяется на дефлаграцию и детонацию. Дефлаграционное горение – это такой режим горения, при котором пламя распространяется с дозвуковой скоростью. При детонации пламя распространяется со сверхзвуковой скоростью, например, в воздухе – со скоростью более 300 м/с. Дозвуковое горение подразделяется на ламинарное и турбулентное. Скорость ламинарного горения зависит от состава смеси, начальных значений температуры и давления, а также от скорости химических превращений в пламени. Скорость распространения турбулентного пламени помимо указанных факторов зависит от скорости потока, степени и масштаба турбулентности.

Самовозгорание, возникновение горения в результате самонагревания горючих твердых материалов, вызванного самоускорением в них экзотермич. реакций. Самовозгорание происходит из-за того, что тепловыделение в ходе реакций больше теплоотвода в окружающую среду.

Начало самовозгорания характеризуется температурой самонагревания (Tсн), представляющей собой минимальную в условиях опыта температуру, при которой обнаруживается тепловыделение.

При достижении в процессе самонагревания определенной температуры, называемой температурой самовозгорания (Tсвоз), возникает горение материала, проявляющееся либо тлением, либо пламенным горением. В последнем случае Tсвоз адекватна температуре самовоспламенения (Tсв), под которым в пожарном деле понимают возникновение горения газов и жидкостей при нагревании до некоторой критической температуры. (см. Воспламенение в пожарном деле). В принципе самовозгорание и самовоспламенение по физической сущности сходны и различаются лишь видом горения, самовоспламенение возникает только в виде пламенного горения.

В случае самовоспламенения самонагревание (предвзрывной разогрев) развивается в пределах всего нескольких градусов и поэтому не учитывается при оценке пожаровзрывоопасности газов и жидкостей. При самовозгорании область самонагревания может достигать нескольких сотен градусов (например, для торфа от 70 до 225 °С). Вследствие этого явление самонагревания всегда учитывается при определении склонности твердых веществ к самовозгоранию.

Самовозгорание изучают путем термостатирования исследуемого материала при заданной температуре и установления зависимости между температурой, при которой возникает горение, размерами образца и временем его нагрева в термостате.

Процессы, происходящие при самовозгорании образцов горючего материала, изображены на рисунке. При температурах до Tсн (напр., T1) материал нагревается без изменений (тепловыделение отсутствует). При достижении Tсн в материале происходят экзотермические реакции. Последние в зависимости от условий накопления теплоты (масса материала, плотность упаковки его атомов и молекул, продолжительность процесса и т. д.) могут после периода небольшого самонагревания по исчерпании способных саморазогреваться компонентов материала завершиться охлаждением образца до начальной температуры термостата (кривая 1) либо продолжать самонагреваться вплоть до Tсвоз (кривая 2). Область между Тсн и Tсвоз потенциально пожароопасна, ниже Tсн-безопасна.

Возможность самовозгорание материала, находящегося в потенциально пожароопасной области, устанавливают с помощью уравнений:

где Tокр-температура окружающей среды, °С; l-определяющий размер (обычно толщина) материала; т-время, в течение которого может произойти самовозгорание; A1, n1 и А2, n2-коэффициент, определяемые для каждого материала по опытным данным.

По уравнению (1) при заданном l находят Tокр, при которой может возникнуть самовозгорание данного материала, по уравнению (2)-при известной Токр величину т. При температуре, ниже вычисленной Tокр, или при т, меньшем, чем время, рассчитанное по уравнению (2), самовозгорание не произойдет.

В зависимости от природы первоначального процесса, вызвавшего самонагревание материала, и значений Tсн различают самовозгорание:

  • химическое
  • микробиологическое
  • тепловое

К химическому самовозгоранию относятся экзотермическое взаимодействие веществ (например, при попадании концентрированной HNО3 на бумагу, древесные опилки и др.). Наиболее типичный и распространенный пример такого процесса - самовозгорание промасленной ветоши или иных волокнистых материалов с развитой поверхностью. Особенно опасны масла, содержащие соединения с ненасыщенными химическими связями и характеризующиеся высоким йодным числом (хлопковое, подсолнечное, джутовое и т.д.). К явлениям химического самовозгорания относится также загорание ряда веществ (например, мелкораздробленный Аl и Fe, гидриды Si, В и некоторых металлов, металлоорганических соединений - алюминийорганические и др.) при контакте их с воздухом в отсутствие нагрева. Способность веществ к самовозгоранию в таких условиях называют пирофорностью. Особенность пирофорных веществ заключается в том, что их Tсвоз (или Tсв) ниже комнатной температуры: - 200°С для SiH4, - 80 °С для А1(С2Н5)3. Для предупреждения химического самовозгорание порядок совместного хранения горючих веществ и материалов строго регламентирован.

Существует так же вид химических реакций веществ, который связан с взаимодействием с водой или влагой. При этом также выделяется достаточная для самовозгорания веществ и материалов температура. Примерами могут служить такие вещества, как калий, натрий, карбид кальция, негашеная известь и др. Особенностью щелочноземельных металлов является их способность гореть и без доступа кислорода. Необходимый для реакции кислород они добывают сами, расщепляя под действием высокой температуры влагу воздуха на водород и кислород. Вот почему тушение водой таких веществ приводит к взрыву образующегося водорода.

Склонностью к микробиологическому самовозгоранию обладают горючие материалы, особенно увлажненные, служащие питательной средой для микроорганизмов, жизнедеятельность которых связана с выделением теплоты (торф, древесные опилки и др.). По этой причине большое число пожаров и взрывов происходит при хранении сельскохозяйственных продуктов (например, силос, увлажненное сено) в элеваторах. Для микробиологического и химического самовозгорания характерно то, что Tсн не превышает обычных значений Токр и может быть отрицательной. Материалы, имеющие Tсн выше комнатной температуры, способны к тепловому самовозгоранию.

Вообще склонностью ко всем видам самовозгорания обладают многие твердые материалы с развитой поверхностью (например, волокнистые), а также некоторые жидкие и плавящиеся вещества, содержащие в своем составе непредельные соединения, нанесенные на развитую (в том числе негорючую) поверхность. Расчет критических условий для химического, микробиологического и теплового самовозгорания осуществляется по уравнениям (1) и (2).

Из-за притяжения Земли при горении возникает конвекция (движение воздуха): нагретый воздух становится легче и устремляется вверх, а холодный снизу приходит ему на смену. Этот поток воздуха приводит к значительному градиенту температуры вдоль пламени.

Схематическое изображение пламени свечи с указанием температуры в его различных точках при горении в нормальных условиях

Поэтому пламя свечи в невесомости выглядит несколько иначе:

Жёлто-оранжевый цвет верхушки пламени в обычных условиях обусловлен свечением частичек сажи, уносимых вверх поднимающимся потоком горячего воздуха. Сажа – это микрочастицы, содержащие углерод, не успевший сгореть, т.е. превратиться в СО2. В невесомости пламя свечи меньше по размеру и не такое горячее, как обычно, т.к. нет достаточного притока свежего воздуха, содержащего кислород. Поэтому сажи очень мало, т.к. она не образуется при температуре ниже 1000 °С. Но, даже если бы её и было достаточно, и тогда из-за низкой температуры она светилась бы в инфракрасном диапазоне, а значит, цвет у пламени в невесомости всегда голубоватый.

Так же цвет пламени зависит от того, какие элементы «сгорают» в нём. Высокая температура пламени даёт возможность атомам перескакивать на некоторое время в более высокие энергетические состояния, а потом, возвращаясь в исходное состояние, излучать свет определённой частоты, которая соответствует структуре электронных оболочек данного элемента. Например, газовая горелка горит голубым пламенем из-за наличия CO, угарного газа, а жёлто-оранжевое пламя спички объясняют наличием солей натрия в древесине.

Список базовой литературы по этой тематике:

Основная литература
1. Я.Б. Зельдович, Г.И., Г.И. Баренблатт, В.Б. Либрович, Г.М. Махвиладзе. Математическая теория горения и взрыва. М.: Наука, 1980 – 478 с.
2. В.В. Померанцев, К.М. Арефьев, Д.Б. Ахмедов и др. Основы практической теории горения. Л.: Энергоатомиздат, Ленингр. отд-ие, 1986 – 309 с.
3. Гришин А.М. Математическое моделирование лесных пожаров и новые способы борьбы с ними. – Новосибирск: Наука, Сиб. Отд-ие, 1992. – 408 с.

Дополнительная литература
1. Концепция развития горения и взрыва как области научно-технического прогресса. Черноголовка: Территория, 2001.
2. Алексеев Б.В., Гришин А.М. Курс лекций по аэротермохимии. Часть 1. Элементы кинетической теории, термодинамики и химической кинетики. Часть 2. Элементы строгой теории коэффициентов переноса, теория переноса энергии излучением и основная система уравнений аэротермохимии. Томск: Изд-во Том. ун-та. 1971.
3. Волокитина А.В., Софронов М.А. Классификация и картографирование растительных горючих материалов. Новосибирск: Изд-во Наука, Сиб. отд-е РАН, 2002 – 306 с.

Взрывная способность горючих газов, паров и пыли в воздухе сохраняется в определенных интервалах их концентраций. Существуют нижние и верхние концентрационные и температурные пределы распространения пламени.

Нижний (верхний) концентрационный предел распространения пламени (НКПРП) − минимальное (максимальное) содержание горючего вещества в однородной смеси с окислительной средой, при которой возможно распространение пламени по смеси на любое расстояние от источника зажигания. Невозможность воспламенения горючей смеси при концентрации ниже НКПРП объясняется малым количеством горючего вещества и избытком воздуха. Чем меньше коэффициент избытка воздуха, тем больше скорость горения и выше давление паров при взрыве. Верхний концентрационный предел распространения пламени характеризуется избытком горючего и малым количеством воздуха. Чем ниже нижний концентрационный предел и больше концентрационная область распространения пламени, тем большую пожарную опасность представляют горючие вещества.

В первом случае взрыв не происходит из-за недостатка горючего вещества, во втором − из-за недостатка воздуха (кислорода), необходимого для окисления горючего вещества.

9. Виды самовозгорания

Самовозгорание присуще всем твердым горючим веществам и материалам.

Самовозгорание – это явление резкого увеличения скорости внутренних (экзотермических) реакций в веществе, приводящее к горению при отсутствии источника зажигания. Если при самовозгорании образуется пламя, то это явление называется самовоспламенением.

Самовозгорание происходит из-за того, что тепловыделение в ходе реакций больше теплоотвода в окружающую среду. Начало самовозгорания характеризуется температурой самонагревания (Т сн ), представляющей собой минимальную температуру, при которой обнаруживается тепловыделение.

При достижении в процессе самонагревания определённой температуры, называемой температурой самовозгорания (Т своз. ), возникает горение материала, проявляющееся либо тлением, либо пламенным горением. В последнем случае Т своз. адекватна температуре самовоспламенения (Т св. ), под которым понимают возникновение горения газов и жидкостей при нагревании до некоторой критической температуры. В принципе самовозгорание и самовоспламенение по физической сущности сходны и различаются лишь видом горения, самовоспламенение возникает только в виде пламенного горения.

В случае самовоспламенения самонагревание развивается в пределах всего нескольких градусов и поэтому не учитывается при оценке пожаровзрывоопасности газов и жидкостей. При самовозгорании область самонагревания может достигать нескольких сотен градусов (например, для торфа от 70 до 225 °С). Вследствие этого явление самонагревания должно учитываться при определении склонности твёрдых веществ к самовозгоранию.

Самовозгорание изучают путём термостатирования исследуемого материала при заданной температуре и установления зависимости между температурой, при которой возникает горение, размерами образца и временем его нагрева в термостате. Процессы, происходящие при самовозгорании образцов горючего материала, изображены на рисунке 3.1.

Рис. 3.1. Процессы самовозгорания

Возможность самовозгорания материала, находящегося в потенциально пожароопасной области, устанавливают с помощью уравнений:

lg T окр. = А 1 n 1 lg, (3.1)

lg T окр. = А 2 n 2 lgτ , (3.2)

где Т окр. − температура окружающей среды, °С; − определяющий размер (обычно толщина) материала; τ − время, в течение которого может произойти самовозгорание; А 1 , п 1 и А 2 , п 2 − коэффициенты, определяемые для каждого материала по опытным данным (см. табл. 3.1).

По уравнению (3.1) при заданном находят Т окр. , при которой может возникнуть самовозгорание данного материала, по уравнению (3.2) при известной Т окр . − величину τ .

При температуре, ниже вычисленной Т окр . , или при τ , меньшем, чем время, рассчитанное по уравнению (3.2), происходит самовозгорание.

В зависимости от природы первоначального процесса, вызвавшего самонагревание материала, и значений Т сн . , различают химическое , микробиологическое и тепловое самовозгорание .

Тепло обыкновенного трубопровода горячей воды или пара (Т = 100÷150 ºС) может явиться тем источником тепла, которого достаточно для самовозгорания изделий из ткани, бумаги или древесины. Поэтому трубопроводы горячей воды или пара необходимо ограждать только экранами из негорючих материалов. В общественных зданиях допускаются декоративные решетки, но и в первом и во втором случаях расстояние от трубопроводов до экранов, а равно и до любого сгораемого материала (занавески, например) должно быть не менее 100 мм. В производственных условиях самовозгораются каменный уголь, торф, опилки, некоторые горючие жидкости, обычно в виде тонких пленок, получающихся при нанесении жидкости на ворсистые поверхности (хлопок, вата и т. п.). К этим жидкостям относятся растительные масла, скипидар. На предприятиях имеются случаи самовозгорания обтирочных материалов, промасленной спецодежды, поэтому спецодежду необходимо развешивать так, чтобы обеспечить доступ воздуха, для отвода тепла промасленные обтирочные материалы собираются в несгораемую тару с крышками и ежесменно удаляются, сжигаются или уничтожаются. Известны случаи тления и горения угля в кучах, торфа и хлопка, неоднократно отмечены случаи самовозгорания толи в рулонах, целлофана и целлулоида, бумаги, а также материалов.

Общее требование пожарной безопасности для случаев теплового самовозгорания формулируется довольно просто: безопасной температурой длительного нагрева вещества считается температура, не превышающая 90 % температуры самонагревания.

Химическое самовозгорание связано со способностью веществ и материалов вступать в химическую реакцию с воздухом или другими окислителями при нормальных условиях с выделением теплоты, достаточной для их возгорания (например, при попадании кондиционированной азотной кислоты на бумагу, древесные опилки и др.). Наиболее характерными примерами являются случаи самовозгорания промасленной ветоши или фосфора на воздухе, легковоспламеняющихся жидкостей при контакте с марганцовкой, древесных опилок с кислотами и пр. Особенно опасны масла, содержащие соединения с ненасыщенными химическими связями и характеризующиеся высоким йодным числом (хлопковое, подсолнечное, джутовое и т. д.).

Другой вид химических реакций веществ связан с взаимодействием воды или влаги. При этом также выделяется достаточная для самовозгорания веществ и материалов температура. Примерами могут служить такие вещества, как калий, натрий, карбид кальция, негашеная известь и др. Особенностью щелочно-земельных металлов является их способность гореть и без доступа кислорода. Необходимый для реакции кислород они добывают сами, расщепляя под действием высокой температуры влагу воздуха на водород и кислород. Вот почему тушение водой таких веществ приводит к взрыву образующегося водорода. Для предупреждения химического самовозгорания порядок совместного хранения горючих веществ и материалов строго регламентирован.

Склонностью к микробиологическому самовозгоранию обладают горючие материалы, особенно увлажненные, служащие питательной средой для микроорганизмов, жизнедеятельность которых связана с выделением теплоты (торф, древесные опилки и др.). По этой причине большое число пожаров и взрывов происходит при хранении сельскохозяйственных продуктов (например, силос, увлажненное сено) в элеваторах. Для микробиологического и химического самовозгорания характерно то, что Т сн . не превышает обычных значений Т окр. и может быть отрицательной. Материалы, имеющие Т сн. выше комнатной температуры, способны к тепловому самовозгоранию.

Склонностью ко всем видам самовозгорания обладают многие твердые материалы с развитой поверхностью (например, волокнистые), а также некоторые жидкие и плавящиеся вещества, содержащие в своем составе непредельные соединения, нанесённые на развитую (в том числе негорючую) поверхность. Все виды самовозгорания имеют чисто условное деление и для большинства горючих веществ процесс самовозгорания представляет собой совокупность тепловой , химической и микробиологической реакции .

Самовозгоранием называется процесс возникновения горения при отсутствии постороннего источника зажигания. Происходит это при резком увеличении скорости экзотермических реакций в определенном объеме вещества, когда скорость выделения тепла превышает скорость теплоотвода в окружающую среду. К самовозгорающимся относятся вещества, у которых температура самонагревания ниже температуры самовоспламенения.

Основное, что необходимо сделать в ходе осмотра места пожара при возникновении версии о самовозгорании, это установить:

Природу материала или материалов (вещества, смеси веществ), которые находились в очаговой зоне на момент пожара,

Объемы (геометрические размеры) и количества складированного вещества (материала);

Условия хранения (температура окружающей среды, упаковка, вентиляция и т.д.);

Предысторию объекта хранения (когда складирован, не было ли признаков самонагревания (дым, запах) и т. д.

В зависимости от первичного импульса, запускающего механизм саморазогрева материала, различают следующие виды самовозгорания:

Тепловое;

Химическое;

Микробиологическое.

Тепловое самовозгорание

Экзотермический процесс окисления материала кислородом воздуха может быть инициирован предварительным подогревом этого материала до определенной температуры. Происходить это может при контакте с нагретыми поверхностями или газовой средой в процессе изготовления материала, его хранения или эксплуатации.

При подозрении на тепловое самовозгорание, кроме вышеперечисленных сведений, необходимо выяснить:

Были ли источники дополнительного подогрева материала (печи, калориферы, трубы отопления, другие нагретые поверхности);

Какие температуры этих источников, масса, поверхность нагрева, длительность действия, расстояние до материала;

Имелись ли условия для аккумуляции тепла.

К тепловому самовозгоранию склонны, например, древесные опилки, стружка, джутовое волокно, бумага в кипах, мелкодисперсные органические материалы (мука, торф, концентрат горючих сланцев, технологическая сажа), некоторые разновидности минеральных ват и других утеплителей и т. д.

Самонагревание древесины начинается при температуре 130-150 °С, однако при длительном (в течение многих лет!) нагреве древесина может переходить в так называемое "пирофорное" состояние и загораться при температуре 90-110 °С.

Возможна ситуация, когда склонный с самовозгоранию материал, после нагрева в процессе производства (например, при сушке), складируется или транспортируется неохлажденным, в результате чего возникает самовозгорание. Характерным признаком самовозгорания при этом является расположение очага в объеме (в глубине материала), а не на его поверхности. Данное обстоятельство, если оно выявлено, обязательно должно быть отражено в протоколе осмотра.

Расположение очага в объеме материала, ближе к центру массива, где наилучшие условия для аккумуляции тепла, а теплопотери наименьшие, является важным квалификационным признаком процесса самовозгорания, причем не только теплового, но и микробиологического.

Самовозгораются отложения краски в окрасочных камерах и их системах вентиляции.

Возможно самовозгорание угля в кучах и штабелях. При подозрении на такого рода причину необходимо выяснить:

Марку складированного угля;

Размеры кучи или штабеля;

Возможное увлажнение до пожара;

Степень измельчения (кусковой, пыль).

Склонность того или иного вещества (материала) к тепловому самовозгоранию может быть установлена по справочным данным . В случае, если имеется неизвестное вещество (материал) или по нему отсутствуют справочные данные, необходимо отобрать негоревшую пробу данного вещества для экспериментального определения температуры самонагревания и условий теплового самовозгорания по ГОСТ 12.1.044-89. Требования к отбираемой пробе указаны в приложении 4. При известных габаритах складированного материала испытания позволят определить минимальную температуру среды и длительность нагрева, при которой может произойти самовозгорание данного материала. Эти результаты можно будет сравнить с фактическими данными по исследуемому пожару.

Химическое самовозгорание

Химическое самовозгорание является результатом взаимодействия двух веществ друг с другом или с окружающей средой (водой, кислородом воздуха), происходящего с выделением достаточного количества тепла.

Рассматривать эту версию имеет смысл, если установлено, что в помещении, где произошел пожар, имелись вещества, склонные к экзотермической реакции с водой, воздухом или друг с другом. Существенно и присутствие в зоне очага разрушенной тары, а также остатков хотя бы одного из веществ.

На воздухе самовозгораются, например, желтый и белый фосфор, щелочные металлы (литий, калий, натрий), карбиды щелочных металлов (во влажном воздухе разлагаются с выделением ацетилена). Вследствие окисления на воздухе самовозгораются металлические порошки и пудры (алюминия, цинка, кобальта и др.).

Склонны к самовозгоранию растительные и животные масла, скипидар и некоторые другие вещества, содержащие химически активные непредельные С-С связи. Натуральная олифа, которая изготавливается из льняного масла, еще более склонна к самовозгоранию, нежели льняное масло, т.к. в нее введены сиккативы, ускоряющие окисление и полимеризацию масла, что приводит к его высыханию.

Минеральные (нефтяного происхождения) масла склонны к самовозгоранию только загрязненные.

Необходимо иметь в виду, что самовозгорание масел и других жидкостей невозможно в сосуде или при их проливе в виде лужи или пленки на какую-либо поверхность. Самовозгораются только пропитанные жидкостью тряпки, вата, шерсть, опилки и другие пористые материалы, на развитой поверхности которых возможен хороший контакт масла с кислородом воздуха. Для самовозгорания нужны оптимальное количество масла на поверхности пористого материала (не много, но и не мало) и условия аккумуляции тепла. Ускоряют самовозгорание соли кобальта, марганца, свинца, некоторых других металлов.

Наименьшая температура, при которой наблюдалось самовозгорание такого рода, составляет 10-15 °С. Период индукции - от нескольких часов до нескольких дней.

При подозрении на самовозгорание масла и подобных материалов необходимо выяснить:

Тип, вид масла, жира;

Что могло быть пропитано, в каком количестве, сколько времени пролежало до пожара;

Наличие условий для аккумуляции тепла.

Химическое самовозгорание возможно и при контакте пары веществ (материалов), одно из которых является сильным окислителем, другое - легкоокисляемым веществом.

К первым относятся соли азотной кислоты (селитры), перманганат калия и натрия, хлораты, перхлораты, бихроматы, хромовый ангидрид, концентрированная серная (более 95 %) и азотная кислоты, перекись водорода, органические перекиси и т.д.

Ко вторым - жидкие органические вещества (двух- и трехатомные спирты, некоторые углеводороды) и мелкодисперсные твердые органические вещества (например, опилки, сахарный песок и пудра и т.д.), указанные выше порошки металлов.

При подозрении на химическое самовозгорание, связанное с экзотермическим взаимодействием двух веществ, необходимо в обязательном порядке затребовать сведения о веществах, которые могли находиться (храниться, транспортироваться) на объекте, где произошел пожар.

При осмотре места пожара необходимо:

а) исследовать окружающие конструкции и предметы для выявления зоны длительного низкотемпературного пиролиза. Как правило, при самовозгорании (химическом, в частности) выделяющегося тепла не хватает для обеспечения мгновенного развития пламенного горения. Процесс обычно на начальном этапе протекает в форме тления, в зонах, где имеются условия для аккумуляции тепла, и лишь через какое-то время переходит в пламенное горение. Поэтому надо пытаться выявить и зафиксировать подобные зоны тления;

б) отобрать пробы угля в целях установления температуры и длительности пиролиза (см. гл. 5). Это необходимо, в частности, для подтверждения режима горения в исследуемой зоне (тление или пламенное горение);

в) отобрать пробы для последующих инструментальных исследований в целях обнаружения в очаговой зоне остатков реагировавших между собой веществ.

Микробиологическое самовозгорание

Характерно для органических дисперсных и волокнистых материалов, внутри которых возможна жизнедеятельность микроорганизмов (сена, соломы, овощей, зерна, фрезерного торфа и др.).

При отработке версии о микробиологическом самовозгорании по возможности необходимо получить следующие данные:

а) влажность сена на момент пожара (известно, что для микробиологического самовозгорания влажность должна быть не менее 16 %);

б) время, прошедшее после закладки (опасность самовозгорания сохраняется до 3-4 месяцев; наиболее вероятно оно в течение 10-30 суток);

в) размеры стога сена (по теоретической теплофизической оценке они должны быть не менее 2×2×2 м; при меньших габаритах стог не способен загореться, т. к. слишком велики теплопотери в окружающую среду).

Важно также выяснить условия хранения и сушки сена. Возможно очаговое (так называемое "гнездовое") возникновение процесса в результате попадания в стог более увлажненного сена или увлажнения отдельных участков через дырявую крышу сенохранилища. "Пластовое" самовозгорание может начаться при миграции влаги в массе сена из-за перепада температур, например, при неравномерном обогреве или охлаждении - при этом в периферийных слоях, вблизи поверхности, образуется конденсационная влага.

Квалификационные признаки микробиологического самовозгорания, выявляемые при осмотре места пожара:

1. Очаг расположен в центре стога или массива другого, склонного к микробиологическому самовозгоранию материала, а не снаружи. Если копна сена имеет поверхностное обугливание (обгорание), а внутри нет следов горения, то это не самовозгорание, а горение, возникшее от внешнего источника открытого огня, искры и т. д.

2. Наличие неразвившихся очагов, в том числе в отдельных кипах. Они представляют собой локальные агломераты сена различной степени термодеструкции (см. рис. 6.4).

Рис. 6.4. Зоны, возникающие в сене при микробиологическом самовозгорании

Мэри никто не поджигал

Биолог-экспериментатор Брайан Дж. Форд уверяет, что наконец-то нашел причину самовозгорания людей. О чем сначала он с коллегами сообщил в специализированном журнале The Microscope, а потом - в научно-популярном New Sientist.

Впервые о том, что люди могут воспламеняться сами по себе и сгорать за считанные минуты, я узнал лет 30 назад. На глаза тогда попалась статья об этом в каком-то иностранном журнале. И навсегда врезалась в память жуткая фотография из него - нога в черной туфле. Это все, что осталась от пожилой 79-килограммовой американки Мэри Ризер , сгоревшей 1 июля 1951 года в Санкт-Петербурге (штат Флорида). Ногу и кучку пепла утром нашел сын, приехавший в гости. Ручка двери, в комнату матери, которую он попытался открыть, была еще горячей…

Остановившиеся часы показали время, в которое произошло воспламенение - 4 часа 20 минут утра. Мэри дремала в кресле. Оно тоже сгорело - до пружин. А больше ничего огонь не тронул - даже газеты, лежавшие рядом. На стенах и потолке не нашли следов копоти, запах дыма еле ощущался.

Это самое удивительное зрелище из тех, что мне приходилось видеть, - признавался потом доктор Уилтон Крогман, судебно- медицинский эксперт медицинского факультета Пенсильванского университета, который участвовал в расследовании. - Невозможно понять, как интенсивное горение тела не вызвало обширного пожара. Огонь такой силы неминуемо должен был уничтожить помещение и всю обстановку в нем.

Ученые установили главное: женщину никто не поджигал.


Сгоревших в адском пламени мало, но они есть

Ныне случай с Мэри Ризер считается классическим появлением кошмарного феномена, получившего название спонтанное самовозгорание человека (Spontaneous Human Combustion - SHC).

В то, что он - феномен - существует верят большинство ученых. Еще в 1870 году в университете Абердина (Шотландия ) была выпущена брошюра. Ее авторы проанализировали отношение коллег к таинственному явлению - из числа тех, кто пробовал в нем разобраться. Лишь восемь из 35 считали его мистификацией, а в задокументированных случаях подозревали поджог. Остальные не сомневались, что люди способны возгореться и сами по себе.

Счет погибших от SHC не велик - порядка 120 случаев по всему миру за все время документированного учета. Что крайне мало. И это, кстати, дало основание утверждать, что в феномене повинно не менее редкое явление - шаровая молния. Мол, она-то и выжигает людей, каким-то образом проникая в тело. Но серьезных подтверждений эта гипотеза так и не получила.

Достоверно известно, что в России "прославился" лишь один человек - пастух Бисен Мамаев. 11 ноября 1990 года он сгорел в поле на границе Саратовской и Волгоградской областей. Его останки нашел брат. Огнем были выжжены внутренние органы пастуха, немного обуглилась кожа и обгорело нижнее белье. А верхняя одежда осталась почти нетронутой. Об этом таинственном происшествии мне рассказывал Вадим Чернобров, предводитель исследовательской группы "Космопоиск", побывавший на месте трагедии.


Алкоголики реабилитированы

Так от чего воспламеняются люди? Что горит в них?

Долгое время вполне серьезные исследователи полагали, что самовозгораются лишь алкоголики. И полыхает спирт, переполняющий их организмы. Однако первый ученый, который взялся проверить эту гипотезу экспериментально, убедился в ее несостоятельности. Немец Ястус фон Лейбиг выяснил: даже хорошо заспиртованные ткани не вспыхивают. Более того, он напрямую вкалывал 70-процентный спирт дохлым крысам - они не горели.

До сих популярна и до конца не отвергнута "гипотеза фитиля". Или "живой свечи". Впервые ее выдвинул еще в 1961 году лондонский врач Гевин Турстон в журнале Medico-Legal Journal. Он считал, что фитилем становится человек в одежде. Человек горит. А растапливаемый в это время жир поддерживает пламя. Пока весь не выгорит.

Как полыхают "фитили" два раза показывали по телевизору в научно-популярных программах ВВС - в 1986 и 1998 годах. Демонстрировали на обернутых тканью свиных тушах. Туши горели. Но очень долго - до 12 часов. И "одежда" на них не сохранялась. А сами туши так и не превращались в кучки пепла, как это происходило со сгоравшими в адском пламени людьми.


"Одетая" свинья горела хорошо, но долго. И разгоралась с трудом

Осторожно, кетоз

Нет, "гипотеза фитиля" не годится, - считает Брайан Форд. - Она не объясняет всех особенностей феномена. И спирт, на который грешили раньше, к делу не относится. Хотя бы потому, что не накапливается. Наоборот, расщепляется в результате метаболизма.

И все же, как объясняет Форд, в организме может появиться очень горючее вещество. Которое к тому же способно накапливаться. Это ацетон.

Производство ацетона в процессе метаболизма начинается тогда, когда в крови понижается содержание глюкозы - основного источника энергии в человеческом организме. Дефицит приводит к тому, что включаются альтернативные механизмы. Начинают расщепляться жировые клетки. Цепочка биохимических реакций, за которые отвечает печень, приводит в итоге к тому, что в кровь поступают особые вещества - так называемые кетоны. Они и становятся источниками питания и носителями энергии вместо глюкозы.

Ацетон - одна из разновидностей кетонов. Его накоплению способствуют некоторые диеты, вызывающие так называемый кетоз. Приводят и заболевания вроде диабета.

Избыток горючего вещества в организме и вызывает самовозгорание, считает ученый. Он проверил это, "замариновав", в ацетоне куски свинины .

Из кусков Форд изготовил масштабные модели человеческих тел. Одел их. И поджег. Сгорели дотла менее, чем за полчаса. Одежда местами осталась нетронутой. Сохранились и конечности. Прямо, как на фото жертв самовозгорания.


Конечно, открытым остается вопрос, откуда все-таки берется та искра, из которой возгорается адское пламя? Тут у Форда нет четкого мнения. Он лишь полагает, что в поджоге человека может участвовать статическое электричество. Поэтому ученый не советует носить синтетическую одежду, которая часто сыплет искрами. Она особенно опасна для людей, подверженных кетозу.

ИСТОРИЧСКАЯ СПРАВКА

Более 500 лет на линии огня

Первое задокументированное свидетельство относится к 1470 году. Описано, как итальянский рыцарь Полоний Вортий, изрядно выпив вина, стал, на глазах у близких родственников, изрыгать пламя, потом вспыхнул и в считанные минуты сгорел дотла. Благодаря этому и некоторым другим случаям стали считать, что человека сжигал дьявольский огонь, испепелял сатана.

В 1763 году а француз Жан Дюпон опубликовал книгу с коллекцией случаев человеческого самовозгорания под названием «De Incendiis Corporis Humani Spontaneis». И рассказал про Николя Милле, с которого суд снял обвинение в убийстве жены, когда суд убедился, что она погибла в результате спонтанного самовозгорания.

От жены Милле, сильно пьющей парижанки, осталась только кучка пепла, череп и ноги. Соломенный матрац, на котором она лежала, остался цел.

В 1850 году немецкий химик Ястус фон Лейбиг провел первое научное исследование спонтанного самовозгорания человека. И доказал: господствовавшая в то время гипотеза не верна. Тогда не сомневались, что причина явления - спирт, которым "пропитаны" алкоголики. Мол, от него они и вспыхивают.

Последнее задокументированное свидетельство относится к 22 декабрю 2010 года - в Ирландии сгорел одинокий старик - 76-летний Майкл Фогерти. Эксперты, промучившись с расследованием целый год, в конце-концов записали, что причина смерти пенсионера самовозгорание.

Просмотров