"плюсы" и "минусы" аэс. Достоинства и недостатки аэс

«Атомная энергетика» - Экономический рост и энергетика ГОЭЛРО-2. Энергетика и экономический рост Роль атомной генерации. Экономический рост и энергетика Инновационный сценарий МЭРТ. Источник: Минэнерго. Источник: Исследование Томского политехнического университета. Повышение энергоэффективности – экономия 360 – 430 млн тут Энергоемкость ВВП в 20 – 59-60% от 07.

«Атомные электростанции в России» - Схема работы АЭС. Плавучая атомная электростанция (ПАТЭС). Принцип работы АЭС. Классификация АЭС по виду отпускаемой энергии. Классификация АЭС по типу реакторов. Получение электроэнергии на АЭС. Действующие АЭС России. Характеристики ВВЭР-1000. География планируемого размещения ПАТЭС в России. Проектируемые атомные станции.

«Атомная опасность» - Вероятностный анализ безопасности атомных. Недопустимая зона. Безопасность и риск. Вероятностный анализ. Анализ безопасности РУ. Анализ риска. Распространение в различных областях науки. Методология оценки риска. Величина риска. Социальные ценности. Зарубежные подходы к проблеме "риска". Упрощение вероятностного подхода.

«Атомная энергетика России» - Необходим переход на сухой способ хранения ОЯТ. Состояние и ближайшие перспективы развития атомной энергетики мира. Принцип внутренне присущей безопасности: Развитие радиохимического производства по переработке топлива. Комплекс по обеспечению ядерной и радиационной безопасности (ЯРБ). Создание альтернативных нынешним монополистам поставщиков основного оборудования.

«Проблемы атомной энергетики» - Особенно остро стоит проблема быстрого исчерпания запасов органических природных энергоресурсов. Классификация ядерных реакторов. 1 кг природного урана заменяет 20 т угля. Атомная энергетика не потребляет кислорода и имеет ничтожное количество выбросов при нормальной эксплуатации. Атомная энергетика.

«Атомная электростанция» - Презентация по физике по теме «Атомные технологии». Используемые источники информации. Тепловыделяющий элемент(ТВЭЛ). Самый известный реактор использующий управляемый ядерный синтез – солнце. На рисунке показана схема работы атомной электростанции. Термоядерные реакторы. АЭС различаются по типу реакторов и по виду отпускаемой энергии.

Всего в теме 12 презентаций

Плюсы и минусы атомной энергетики
За 40 лет развития атомной энергетики в мире построено около 400 энергоблоков в 26 странах мира с суммарной энергетической модностью около 300 млн. кВт. Основными преимуществами атомной энергетики являются высокая конечная рентабельность и отсутствие выбросов в атмосферу продуктов сгорания (с этой точки зрения она может рассматриваться как экологически чистая), основными недостатками потенциальная опасность радиоактивного заражения окружающей среды продуктами деления ядерного топлива при аварии (типа Чернобыльской или на американской станции Тримайл Айленд) и проблема переработки использованного ядерного топлива.
Остановимся сначала на преимуществах. Рентабельность атомной энергетики складывается из нескольких составляющих. Одна из них независимость от транспортировки топлива. Если для электростанции мощностью 1 млн. кВт требуется в год около 2 млн. т.у.т. (или около 5 млн. низкосортного угля), то для блока ВВЭР-1000 понадобится доставить не более 30 т. обогащенного урана, что практически сводит к нулю расходы на перевозку топлива (на угольных станциях эти расходы составляют до 50% себестоимости). Использование ядерного топлива для производства энергии не требует кислорода и не сопровождается постоянным выбросом продуктов сгорания, что, соответственно, не потребует строительства сооружений для очистки выбросов в атмосферу. Города, находящиеся вблизи атомных станций, являются в основном экологически чистыми зелеными городами во всех странах мира, а если это не так, то это происходит из-за влияния других производств и объектов, расположенных на этой же территории. В этом отношении ТЭС дают совсем иную картину. Анализ экологической ситуации в России показывает, что на долю ТЭС приходится более 25% всех вредных выбросов в атмосферу. Около 60% выбросов ТЭС приходится на европейскую часть и Урал, где экологическая нагрузка существенно превышает предельную. Наиболее тяжелая экологическая ситуация сложилась в Уральском, Центральном и Поволжском районах, где нагрузки, создаваемые выпадением серы и азота, в некоторых местах превышают критические в 2-2,5 раза.
К недостаткам ядерной энергетики следует отнести потенциальную опасность радиоактивного заражения окружающей среды при тяжелых авариях типа Чернобыльской. Сейчас на АЭС, использующих реакторы типа Чернобыльского (РБМК), приняты меры дополнительной безопасности, которые, по заключению МАГАТЭ (Международного агентства по атомной энергии), полностью исключают аварию подобной тяжести: по мере выработки проектного ресурса такие реакторы должны быть заменены реакторами нового поколения повышенной безопасности. Тем не менее в общественном мнении перелом по отношению к безопасному использованию атомной энергии произойдет, по-видимому, не скоро. Проблема утилизации радиоактивных отходов стоит очень остро для всего мирового сообщества. Сейчас уже существуют методы остекловывания, битумирования и цементирования радиоактивных отходов АЭС, но требуются территории для сооружения могильников, куда будут помещаться эти отходы на вечное хранение. Страны с малой территорией и большой плотностью населения испытывают серьезные трудности при решении этой проблемы. #2

Ядерная топливно-энергетическая база России.

Пуск в 1954 году первой атомной электростанции мощностью всего лишь 5000 кВт стал событием мировой важности. Он ознаменовал начало развития атомной энергетики, которая может обеспечить человечество электрической и тепловой энергией на длительный период. Ныне мировая доля электрической энергии, вырабатываемой на АЭС, относительно невелика и составляет около 17 процентов, но в ряде стран она достигает 50-75 процентов. В Советском Союзе была создана мощная ядерно-энергетическая промышленность, которая обеспечивала топливом не только свои АЭС, но и АЭС ряда других стран. В настоящее время на АЭС России, стран СНГ и Восточной Европы эксплуатируются 20 блоков с реакторами ВВЭР-1000, 26 блоков с реакторами ВВЭР-440, 15 блоков с реакторами РБМК и 2 блока с реакторами на быстрых нейтронах. Обеспечение ядерным топливом этих реакторов и определяет объем промышленного производства твэлов и ТВС в России. Они изготавливаются на двух заводах: в г.Электросталь - для реакторов ВВЭР-440, РБМК и реакторов на быстрых нейтронах; в г-Новосибирске - для реакторов ВВЭР-1000.Таблетки для твэлов ВВЭР-1000 и РБМК поставляет завод, находящийся в Казахстане (г.Усть-Каменогорск). #4
В настоящее время из 15 атомных электростанций, построенных в СССР, 9 находятся на территории России; установленная мощность их 29 энергоблоков составляет 21242 мегаватта. Среди действующих энергоблоков 13 имеют корпусные реакторы ВВЭР (водо-водяной энергетический реактор, активная зона которого размещается в металлическом или из предварительно напряженного бетона корпусе, рассчитанном на полное давление теплоносителя), 11 блоков- канальные реакторы РМБК-1000(РМБК - графито-водяной реактор без прочного корпуса. Теплоноситель в этом реакторе протекает через трубы, внутри которых находятся тепловыделяющие элементы), 4 блока- ЭГП (водо-графитовый канальный реактор с кипящим теплоносителем) по 12 мегаватт каждый установлены на Билибинской АТЭС и еще один энергоблок снабжен реактором БН-600 на быстрых нейтронах. Следует заметить, что основной парк корпусных реакторов последнего поколения был размещен на Украине (10 блоков ВВЭР-1000 и 2 блока ВВЭР-440). #9

Новые энергоблоки.
Сооружение нового поколения энергоблоков с корпусными реакторами (с водой под давлением) начинается в этом десятилетии. Первыми из них станут блоки ВВЭР-640, конструкция и параметры которых учитывают отечественный и мировой опыт, а также блоки с усовершенствованным реактором ВВЭР-1000 с существенно повышенными показателями безопасности. Головные энергоблоки ВВЭР-640 размещаются на площадках г. Сосновый Бор Ленинградской области и Кольской АЭС, а на базе ВВЭР-1000 - на площадке Нововоронежской АЭС.
Разработан также проект корпусного реактора ВПБЭР-600 средней мощности с интегральной компоновкой. АЭС с такими реакторами смогут сооружаться несколько позже.
Названные типы оборудования при своевременном выполнении всех научно-исследовательских и опытных работ обеспечат основные потребности атомной энергетики на прогнозируемый 15-20-летний период.
Существуют предложения продолжать работы по графито-водяным канальным реакторам, перейти на электрическую мощность 800 мегаватт и создать реактор, не уступающий реактору ВВЭР по безопасности. Такие реакторы могли бы заменить действующие реакторы РБМК. В перспективе возможно строительство энергоблоков с современными безопасными реакторами БН-800 на быстрых нейтронах. Эти реакторы могут быть использованы и для вовлечения в топливный цикл энергетического и оружейного плутония, для освоения технологий выжигания актиноидов (радиоактивных элементов-металлов, все изотопы которых радиоактивны). #9

Перспективы развития атомной энергетики.
При рассмотрении вопроса о перспективах атомной энергетики в ближайшем (до конца века) и отдаленном будущем необходимо учитывать влияние многих факторов: ограничение запасов природного урана, высокая по сравнению с ТЭС стоимость капитального строительства АЭС, негативное общественное мнение, которое привело к принятию в ряде стран (США, ФРГ, Швеция, Италия) законов, ограничивающих атомную энергетику в праве использовать ряд технологий (например, с использованием Рu и др.), что привело к свертыванию строительства новых мощностей и постепенному выводу отработавших без замены на новые. В то же время наличие большого запаса уже добытого и обогащенного урана, а также высвобождаемого при демонтаже ядерных боеголовок урана и плутония, наличие технологий расширенного воспроизводства (где в выгружаемом из реактора топливе содержится больше делящихся изотопов, чем загружалось) снимают проблему ограничения запасов природного урана, увеличивая возможности атомной энергетики до 200-300 Q. Это превышает ресурсы органического топлива и позволяет сформировать фундамент мировой энергетики на 200-300 лет вперед.
Но технологии расширенного воспроизводства (в частности, реакторы-размножители на быстрых нейтронах) не перешли в стадию серийного производства из-за отставания в области переработки и рецикла (извлечения из отработанного топлива "полезного" урана и плутония). А наиболее распространенные в мире современные реакторы на тепловых нейтронах используют лишь 0,50,6% урана (в основном делящийся изотоп U 238 , концентрация которого в природном уране 0,7%). При такой низкой эффективности использования урана энергетические возможности атомной энергетики оцениваются только в 35 Q. Хотя это может оказаться приемлемым для мирового сообщества на ближайшую перспективу, с учетом уже сложившегося соотношения между атомной и традиционной энергетикой и постановкой темпов роста мощностей АЭС во всем мире. Кроме того, технология расширенного воспроизводства дает значительную дополнительную экологическую нагрузку. .Сегодня специалистам вполне понятно, что ядерная анергия, в принципе, является единственным реальным и существенным источником обеспечения электроэнергией человечества в долгосрочном плане, не вызывающим такие отрицательные для планеты явления, как парниковый эффект, кислотные дожди и т.д. Как известно, сегодня энергетика, базирующаяся на органическом топливе, то есть на сжигании угля, нефти и газа, является основой производства электроэнергии в мире Стремление сохранить органические виды топлива, одновременно являющиеся ценным сырьем, обязательство установить пределы для выбросов СО; или снизить их уровень и ограниченные перспективы широкомасштабного использования возобновляемых источников энергии все это свидетельствует о необходимости увеличения вклада ядерной энергетики.
Учитывая все перечисленное выше, можно сделать вывод, что перспективы развития атомной энергетики в мире будут различны для разных регионов и отдельных стран, исходя из потребностей и электроэнергии, масштабов территории, наличия запасов органического топлива, возможности привлечения финансовых ресурсов для строительства и эксплуатации такой достаточно дорогой технологии, влияния общественного мнения в данной стране и ряда других причин. #2
Отдельно рассмотрим перспективы атомной энергетики в России . Созданный в России замкнутый научно-производственный комплекс технологически связанных предприятий охватывает все сферы, необходимые для функционирования атомной отрасли, включая добычу и переработку руды, металлургию, химию и радиохимию, машино- и приборостроение, строительный потенциал. Уникальным является научный и инженерно-технический потенциал отрасли. Промышленно-сырьевой потенциал отрасли позволяет уже в настоящее время обеспечить работу АЭС России и СНГ на много лет вперед, кроме того, планируются работы по вовлечению в топливный цикл накопленного оружейного урана и плутония. Россия может экспортировать природный и обогащенный уран на мировой рынок, учитывая, что уровень технологии добычи и переработки урана по некоторым направлениям превосходит мировой, что дает возможность в условиях мировой конкуренции удерживать позиции на мировом урановом рынке.
Но дальнейшее развитие отрасли без возврата к ней доверия населения невозможно. Для этого нужно на базе открытости отрасли формировать позитивное общественное мнение и обеспечить возможность безопасного функционирования АЭС под контролем МАГАТЭ. Учитывая экономические трудности России, отрасль сосредоточится в ближайшее время на безопасной эксплуатации существующих мощностей с постепенной заменой отработавших блоков первого поколения наиболее совершенными российскими реакторами (ВВЭР-1000, 500, 600), а небольшой рост мощностей произойдет за счет завершения строительства уже начатых станций. На длительную перспективу в России вероятен рост мощностей в переходом на АЭС новых поколений, уровень безопасности и экономические показатели которых обеспечат устойчивое развитие отрасли на перспективу.


Все наслышаны о главном недостатке АЭС – о тяжелых последствиях аварий на атомных станциях. Десятки тысяч погибших и множество смертельно заболевших людей, мощное радиационное облучение, влияющее на здоровье человека и его потомков, города, ставшие непригодными для жизни… список, к сожалению, можно продолжать бесконечно. Хвала небесам, что случаи аварий единичны, подавляющее большинство атомных станций мира успешно работают десятилетиями, ни разу не сталкиваясь со сбоями системы.

Сегодня атомная энергетика – это одно из самых быстро развивающихся направлений в мировой науке. Попытаемся отойти от устойчивого мифа о том, что атомные станции – это опасность ядерных катастроф и узнать про достоинства и недостатки АЭС как источников электроэнергии. В чем атомные станции превосходят тепловые и гидроэлектростанции? Каковы преимущества и недостатки АЭС? Стоит ли развивать это направление добычи электричества? Обо всем этом и не только…

Вы знали, что получить электричество можно с помощью обычной картошки, лимона или комнатного цветка? Понадобятся лишь гвоздь и медная проволока. Но снабдить электроэнергией весь мир картошка и лимоны, конечно, не смогут. Поэтому с 19 века ученые начали осваивать методы получения электроэнергии с помощью генерации.

Генерация – это процесс преобразования различных видов энергии в электрическую. Процесс генерации происходит в электрических станциях. Сегодня существует множество видов генерации.

Получить электроэнергию сегодня можно следующими способами:

  1. Тепловая электроэнергетика – электроэнергия получается с помощью теплового сгорания органического топлива. Если просто – нефть и газ сгорают, выделяют тепло, тепло нагревает пар. Пар под давлением заставляет вращаться электрогенератор, а электрогенератор вырабатывает электроэнергию. Тепловые электрические станции, в которых происходит этот процесс, именуются ТЭСами.
  2. Ядерная энергетика – принцип работы АЭС (атомных станций, получающих электроэнергию с помощью ядерных установок) очень похож на работу ТЭС. Отличие лишь в том, что тепло получают не от сгорания органического топлива, а от деления атомных ядер в ядерном реакторе.
  3. Гидроэнергетика – в случае с ГЭС (гидроэлектростанциями), электрическую энергию получают от кинетической энергии течения воды. Вы когда-нибудь видели водопады? В основе такого способа получения энергии лежит сила водных водопадов, которые вращают роторы электрогенераторов, производящих электроэнергию. Конечно, водопады не природные. Они создаются искусственно, используя природное речное течение. Кстати, не так давно ученые выяснили, что морское течение намного мощнее речного, в планах строить морские гидроэлектростанции.
  4. Ветроэнергетика – в данном случае приводит в действие электрогенератор кинетическая энергия ветра. Помните мельницы? В них полностью отражен этот принцип работы.
  5. Гелиоэнергетика – в гелиоэнергетике платформой для преобразования служит тепло солнечных лучей.
  6. Водородная энергетика – электроэнергию получают путем сгорания водорода. Водород сжигают, он выделяет тепло, а дальше все происходит по уже известной нам схеме.
  7. Приливная энергетика – что используют для добычи электроэнергии в этом случае? Энергию морских приливов!
  8. Геотермальная энергетика — получение сначала тепла, а потом и электроэнергии из естественного тепла Земли. К примеру, в вулканических районах.

Недостатки альтернативных источников энергии

Атомные, гидро и тепловые электростанции являются основными источниками получения электроэнергии в современном мире. Каковы достоинства АЭС, ГЭС и ТЭС? Почему нас не греет энергия ветра или энергия морских приливов? Чем ученым не угодил водород или естественное тепло Земли? На то есть свои причины.

Энергии ветра и солнца и морских приливов принято называть альтернативными из-за их редкого использования и совсем недавнего появления. А еще из-за того, что ветер, солнце, море и тепло Земли возобновляемы, и то, что человек воспользуется солнечным теплом или морским приливом никакого вреда ни солнцу ни приливу не принесет. Но не спешите бежать и ловить волны, не все так легко и радужно.

Гелиоэнергетика имеет существенные минусы — солнце светит только днем, соответственно ночью никакой энергии от него не добьешься. Это неудобно, т.к. основной пик потребления электричества приходится на вечерние часы. В разное время года и в разных местах Земли солнце светит по-разному. Подстраиваться под него дело затратное и сложное.

Ветер и волны тоже явления своенравные, хотят – дуют и приливают, а хотят — нет. Но если они и работают, то делают это медленно и слабо. Поэтому ветроэнергетика и приливная энергетика пока не получили большого распространения.

Геотермальная энергетика – сложный процесс, т.к. строить электрические станции можно только в зонах тектонической активности, где из-под земли можно «выжать» максимум тепла. Много ли мест с вулканами вы знаете? Вот и ученые немного. Поэтому геотермальная энергетика, скорее всего, так и останется узконаправленной и не особо работоспособной.

Водородная энергетика наиболее перспективна. Водород имеет очень высокий КПД сгорания и его сжигание абсолютно экологически чисто, т.к. продукт сгорания – дистиллированная вода. Но, есть одно но. Стоит процесс производства чистого водорода невероятно больших денег. Вы хотите платить миллионы за свет и горячую воду? Никто не хочет. Ждем, надеемся и верим, что в скором времени ученые найдут способ сделать водородную энергетику более доступной.

Атомная энергетика сегодня

По разным данным, ядерная энергетика сегодня дает от 10 до 15% электроэнергии во всем мире. Атомную энергию использует 31 страна. Наибольшее количество исследований в области электроэнергетики ведутся именно по использованию ядерной энергии. Логично предположить, что преимущества АЭС явно велики, если из всех видов добычи электроэнергии развивают именно этот.

В то же время, есть страны, которые отказываются от использования ядерной энергетики, закрывают все имеющиеся атомные станции, к примеру, Италия. На территории Австралии и Океании АЭС не существовало и не существует в принципе. Австрия, Куба, Ливия, КНДР и Польша остановили разработки АЭС и временно отказались от планов по созданию атомных станций. Эти страны не обращают внимания на достоинства АЭС и отказываются от их установки в первую очередь по соображениям безопасности и больших затрат на строительство и эксплуатацию атомных станций.

Лидерами в атомной энергетике сегодня являются США, Франция, Япония и Россия. Именно они по достоинству оценили преимущества АЭС и стали внедрять атомную энергетику в свои страны. Наибольшее количество строящихся проектов АЭС сегодня принадлежат Китайской Народной Республике. Еще около 50ти стран активно работают над внедрением ядерной энергетики.

Как и все способы добычи электроэнергии имеет АЭС преимущества и недостатки. Говоря про преимущества АЭС нужно отметить экологичность производства, отказ от использования органического топлива и удобство в транспортировке необходимого горючего. Рассмотрим все подробнее.

Преимущества АЭС перед ТЭС

Преимущества и недостатки АЭС зависят от того, с каким видом получения электроэнергии мы сравниваем ядерную энергетику. Поскольку основные конкуренты атомных станций – ТЭС и ГЭС, сравним достоинства и недостатки АЭС по отношению к этим видам получения энергии.

ТЭС, то есть теплоэлектростанции бывают двух видов:

  1. Конденсационные или коротко КЭС служат только для производства электроэнергии. Кстати, другое их название пришло из советского прошлого, КЭС также называют ГРЭСами – сокращенно от «государственная районная электростанция».
    2. Теплоэлектроцентрали или ТЭЦ позволяют только производить не только электрическую, но и тепловую энергию. Взяв, к примеру, жилой дом, понятно, что КЭС только даст в квартиры электричество, а ТЭЦ еще и отопление вдобавок.

Как правило, ТЭС работают на дешевом органическом топливе – угле или угольной пыли и мазуте. Самые востребованные энергетические ресурсы сегодня – это уголь, нефть и газ. По оценкам экспертов мировых запасов угля хватит еще на 270 лет, нефти – на 50 лет, газа – на 70. Даже школьник понимает, что 50летних запасов очень мало и их надо беречь, а не ежедневно сжигать в печах.

ВАЖНО ЗНАТЬ:

АЭС решают проблему нехватки органического топлива. Преимущество АЭС – это отказ от органического топлива, тем самым, сохранение исчезающих газа, угля и нефти. Вместо них на АЭС используется уран. Мировые запасы урана оцениваются в 6 306 300 тонн. Насколько лет его хватит, никто не считает, т.к. запасов много, потребление урана достаточно небольшое, и об его исчезновении думать пока не приходится. В крайнем случае, если запасы урана вдруг унесут инопланетяне или они испарятся сами собой, в качестве ядерного топлива может применяться плутоний и торий. Преобразовать их в ядерное топливо пока дорого и сложно, но можно.

Преимущества АЭС перед ТЭС – это и сокращение количества вредных выбросов в атмосферу.

Что выделяется в атмосферу при работе КЭС и ТЭЦ и насколько это опасно:

  1. Диоксид серы или сернистый ангидрид опасный газ, губительный для растений. При попадании в организм человека в больших количествах вызывает кашель и удушье. Соединяясь с водой, диоксид серы превращается в сернистую кислоту. Именно благодаря выбросам диоксида серы возникает риск кислотных дождей, опасных для природы и человека.
    2. Оксиды азота – опасны для дыхательной системы человека и животных, раздражают дыхательные пути.
    3. Бенапирен – опасен тем, что имеет свойство скапливаться в организме человека. В результате длительного воздействия может вызывать злокачественные опухоли.

Суммарные годовые выбросы ТЭС на 1000 МВт установленной мощности – это 13 тысяч тонн в год на газовых и 165 тысяч тонн на пылеугольных тепловых станциях. ТЭС мощностью в 1000 МВт в год потребляет 8 миллионов тонн кислорода для окисления топлива, преимущества АЭС в том, что в атомной энергетике кислород не потребляется в принципе.

Вышеперечисленные выбросы для АЭС также не характерны. Преимущество АЭС — выбросы вредных веществ в атмосферу на атомных станциях ничтожно малы и по сравнению с выбросами ТЭС, безвредны.

Преимущества АЭС перед ТЭС – это низкие затраты на перевозку топлива. Уголь и газ чрезвычайно дорого доставлять на производства, в то время как необходимый для ядерных реакций уран можно поместить в одну небольшую грузовую машину.

Недостатки АЭС перед ТЭС

  1. Недостатки АЭС перед ТЭС это в первую очередь наличие радиоактивных отходов. Радиоактивные отходы на атомных станциях стараются по максимуму переработать, но утилизировать совсем их не получается. Конечные отходы на современных АЭС перерабатывают в стекло и хранят в специальных хранилищах. Удастся ли их когда-нибудь использовать – пока неизвестно.
    2. Недостатки АЭС – это и небольшой КПД относительно ТЭС. Так как процессы в ТЭС протекают при более высоких температурах, они являются более производительными. В АЭС этого добиться пока сложно, т.к. циркониевые сплавы, которые косвенно участвуют в ядерных реакциях, не могут выдерживать запредельно высоких температур.
    3. Особняком стоит общая проблема тепло и атомных электростанций. Недостаток АЭС и ТЭС – это тепловое загрязнение атмосферы. Что это значит? При получении ядерной энергии выделяется большое количество тепловой энергии, которая выбрасывается в окружающую среду. Тепловое загрязнение атмосферы – проблема сегодняшнего дня, оно влечет за собой множество проблем вроде создания тепловых островов, изменения микроклимата и, в конечном счете, глобального потепления.

Современные АЭС уже решают проблему теплового загрязнения и используют для охлаждения воды собственные искусственные бассейны или градирни (специальные охладительные башни для охлаждения больших объемов горячей воды).

Преимущества и недостатки АЭС перед ГЭС

Преимущества и недостатки АЭС перед ГЭС связаны в основном с зависимостью ГЭС от природных ресурсов. Об этом подробнее…

  1. Преимущество АЭС перед гидроэлектростанциями – это теоретическая возможность строительства новых атомных станций, в то время как большинство рек и водоемов, способных работать на благо гидроэлектростанций, уже заняты. То есть открытие новых ГЭС затруднено из-за нехватки нужных мест.
    2. Следующие преимущества АЭС перед ГЭС – это непрямая зависимость от природных ресурсов. ГЭС напрямую зависят от природного водоема, АЭС же только косвенно – от добычи урана, все остальное обеспечивают сами люди и их изобретения.

Недостатки АЭС перед водными станциями незначительны — ресурсы, которые использует АЭС для ядерной реакции, а конкретно урановое топливо, является не возобновляемым. В то время как количество воды – основного возобновляемого ресурса ГЭС, от работы гидроэлектростанции никак не изменится, а уран сам по себе восстановиться в природе не может.

АЭС: преимущества и недостатки

Мы подробно рассмотрели достоинства и недостатки АЭС перед другими способами получения электроэнергии.

«Но как же радиоактивные выбросы АЭС? Рядом с атомными станциями невозможно жить! Это опасно!» — скажете вы. «Ничего подобного» — ответит вам статистика и мировое ученое сообщество.

По статистическим сравнительным оценкам, проведенным в разных странах, отмечается, что смертность от заболеваний, которые появились от воздействия выбросов ТЭС выше, чем смертность от заболеваний, которые развились в организме человека от утечки радиоактивных веществ.

Собственно, все радиоактивные вещества прочно заперты в хранилищах и ждут часа, когда их научатся остаточно перерабатывать и использовать. В атмосферу такие вещества не выбрасываются, уровень радиации в населенных пунктах близ АЭС не больше традиционного уровня радиации в крупных городах.

Говоря про достоинства и недостатки АЭС, нельзя не вспомнить о стоимости постройки и запуска атомной станции. Ориентировочная стоимость небольшой современной ядерной станции – 28 миллиардов евро, специалисты утверждают, что стоимость ТЭС примерно такая же, здесь никто не выигрывает. Однако преимущества АЭС будут в меньших затратах на покупку и утилизацию топлива – уран хоть и дороже, но способен «работать» более года, в то время как запасы угля и газа необходимо постоянно пополнять.

Аварии на АЭС

Ранее мы не упомянули только основные недостатки АЭС, которые всем известны – это последствия возможных аварий. Аварии на АЭС классифицируются по шкале INES, которая имеет 7 уровней. Опасность облучения для населения представляют аварии 4го уровня и выше.

Только две аварии в истории оценены по максимальному 7му уровню – Чернобыльская катастрофа и авария на АЭС Фукусима 1. Одну аварию посчитали 6м уровнем, это Кыштымская авария, которая произошла в 1957 году на химкомбинате «Маяк» в Челябинской области.

Безусловно, имеющиеся у АЭС преимущества и недостатки меркнут по сравнению с возможностью ядерных катастроф, уносящих жизни множества людей. Но достоинства АЭС сегодня – это усовершенствованная система безопасности, которая практически полностью исключает возможность аварий, т.к. алгоритм работы атомных реакторов компьютеризирован и с помощью компьютеров реакторы отключаются в случае минимальных нарушений.

Имеющиеся у АЭС преимущества и недостатки учитывают при разработке новых моделей атомных станций, которые будут работать на переработанном ядерном топливе и уране, залежи которого ранее в работу не вводились.

Это значит, что основные преимущества АЭС сегодня – это перспективность их модернизации, улучшения и новых изобретений в этой области. Думается, что самые главные достоинства АЭС откроются чуть позже, надеемся, что наука не будет стоять на месте, и совсем скоро мы о них узнаем.

Обеспечение энергетической безопасности - одна из ключевых задач любого современного государства. На сегодняшний день одним из самых передовых вариантов добычи электроэнергии является использование ядерных реакторов. В связи с этим строится атомная электростанция в Беларуси. Об этом промышленном объекте мы поговорим в статье.

Основная информация

Белорусская возводится в Гродненской области страны буквально в 50 километрах от столицы соседней Литвы - Вильнюса. Строительство началось в 2011 году, а завершиться по плану должно в 2019 году. Проектная мощность агрегата составляет 2400 МВт.

Островецкая площадка - место, где строится станция, - курируется российскими специалистами из компании "Атомстройэкспорт".

Несколько слов о проектировании

В Беларуси обойдётся государственному бюджету в 11 миллиардов американских долларов.

Сам же вопрос монтажа объекта в стране возник ещё в 1990-х годах, но окончательное решение о начале строительства было принято лишь в 2006 году. Основным местом для станции выбрали город Островец.

Влияние политики

Возводить АЭС, анализируя плюсы и минусы атомной энергетики, были готовы начать сразу же несколько иностранных держав: Китай, Чехия, США, Франция, Россия. Однако в итоге главным подрядчиком стала Российская Федерация. Хотя изначально считалось, что это строительство будет невыгодно РФ, которая планировала ввести в эксплуатацию свою АЭС в Калининградской области. Но все же в октябре 2011 года между россиянами и белорусами был подписан контракт на поставку оборудования в Белорусский город Островец.

Законодательный аспект

В Беларуси строится в соответствии с законом, регламентирующим показатели радиационной безопасности населения страны. В этом акте прописаны условия, обязательные для их обеспечения, которые позволят людям сохранить жизнь и здоровье в условиях эксплуатации АЭС.

Денежный займ

С самого начала разработки проекта окончательная стоимость его варьировалась, так как рассматривались различные типы реакторов. Изначально требовалось 9 миллиардов долларов, 6 из которых должны было пойти на само строительство, а 3 на создание всей необходимой инфраструктуры: линий ЛЭП, жилых домов для работников станции, железнодорожных путей и прочего.

Уже сразу стало понятно, что всей необходимой суммы у Белоруссии просто нет. И потому руководство страны планировало взять кредит у России, причём в виде "живых" денег. При этом сразу же белорусы сказали, что если денег они не получат, то строительство окажется под угрозой срыва. В свою очередь российские власти озвучили свои опасения по поводу того, что их соседи окажутся неспособными вернуть долг или используют полученные средства для поддержания экономики своей страны.

В связи с этим российские чиновники вынесли предложение сделать так, чтобы атомная электростанция в Беларуси стала совместным предприятием, однако белорусская сторона на это ответила отказом.

Точка в этом споре была поставлена 15 марта 2015 года, когда Путин посетил Минск и предоставил Беларуси 10 миллиардов для строительства станции. Ориентировочный срок окупаемости проекта около 20 лет.

Строительный процесс

Выемка грунта на объекте началась в 2011 году. А через два года Лукашенко подписал указ, дающий право российскому генподрядчику начать строительство такого огромного промышленного объекта, как атомная электростанция в Беларуси.

В конце мая 2014 года был полностью готов котлован, и стартовали работы по заливке фундамента здания второго В декабре 2015 года на станцию завезли корпус для первого реактора.

Чрезвычайные происшествия

В мае 2016 года в СМИ просочилась информация о том, что на строительной площадке АЭС якобы произошло обрушение металлоконструкции. Белорусский МИД в свою очередь передал официальный ответ литовцам, что никаких нештатных ситуаций на стройке не произошло.

Но к октябрю 2016 года количество официальных несчастных случаев во время возведения станции достигло десяти, три из которых оказались летальными.

Скандал

Как сообщил один из гражданских активистов Белоруссии, по его данным, 10 июля 2015 года во время репетиции установки корпуса реактора произошло его падение на землю. Планировалось, что на следующий день монтаж должен был пройти в присутствии журналистов и телевидения.

26 июля Министерство энергетики страны подтвердило факт ЧП, указав, что инцидент произошёл на площадке хранения корпуса во время его строповки для последующего перемещения в горизонтальном направлении. Данная вызвала мгновенную и крайне острую реакцию со стороны Литвы. 28 июля министр энергетики этой прибалтийской страны подал ноту белорусскому послу с просьбой уточнить все детали происшедшего и уведомить о них.

1 августа монтажные работы по установке корпуса были приостановлены и тогда же главный конструктор этого агрегата сказал, что проведенные теоретические расчёты, показали: реактор не получил серьёзных повреждений от падения. Такого же мнения придерживался и глава "Росатома", указавший на отсутствие оснований для запрета эксплуатации корпуса.

Однако совсем другого мнения придерживались физики-ядерщики и прочие технические специалисты. Все они в один голос говорили: применять упавший корпус в дальнейшем нельзя. Это объяснялось тем, что, учитывая вес изделия, сварочные швы и покрытие могли получить критические повреждения. Все эти дефекты впоследствии могли проявиться из-за непрерывного воздействия потока нейтронов и привести к окончательному разрушению всей конструкции. Кроме того, инженеры отмечали отсутствие полноценного опыта производства подобных корпусов у завода-изготовителя, расположенного в Волгодонске, который не выпускал подобные узлы более тридцати лет.

В итоге 11 августа министр энергетики Беларуси заявил, что реактор все-таки заменят. В результате, сроки окончания монтажных операций сдвинутся на неопределённый срок. В качестве решения проблемы "Росатом" вынес предложение использовать корпус реактора второго блока.

Протестные акции

В самой республике неоднократно были проведены многочисленные народные выступления против постройки АЭС. Также негативное отношение к возведению станции высказали чиновники высших рангов в Литве и Австрии. Оба этих государства отметили неготовность проекта к реализации по целому ряду причин.

Достоинства и недостатки атомной энергетики

Рассматривая плюсы и минусы атомной энергетики, стоит заметить, что за счет специфики протекания ядерных реакций, затраты потребляемого топлива достаточно малы. Это и является основным положительным моментом данного вида производства электричества. Также, как это ни странно звучит, но является экологически чистым. Даже ТЭС делает больше вредных выбросов в атмосферу, чем АЭС.

Из отрицательных моментов атомных реакторов можно отметить проблематичность процесса утилизации отходов и высокую опасность техногенных аварий, которые потенциально способны нанести вред миллионам людей.

Ядерная энергетика - один из наиболее перспективных путей утоления энергетического голода человечества в условиях энергетических проблем, связанных с использованием ископаемого горючего топлива.

Плюсы АЭС 1. Потребляет мало топлива 2. Более экологически чистая, чем ТЭС и ГЭС (которые работают на мазуте, торфе и другом топливе.): т. к. АЭС работает на уране и частично на газе. 3. Можно строить в любом месте. 4. Не зависит от дополнительного источника энергии:

Расходы на перевозку ядерного топлива, в отличие от традиционного, ничтожны. В России это особенно важно в европейской части, так как доставка угля из Сибири слишком дорога. Вагон для перевозки ядерного топлива

Огромным преимуществом АЭС является её относительная экологическая чистота. На ТЭС суммарные годовые выбросы вредных веществ на 1000 МВт установленной мощности составляют примерно от 13 000 до 165 000 тонн в год.

ТЭС мощностью 1000 МВт потребляет 8 миллионов тонн кислорода в год для окисления топлива, АЭС же не потребляют кислорода вообще.

Наиболее мощные АЭС в мире «Фукусима» «Брус» «Гравелин» «Запорожская» «Пикеринг» «Пало Верде» «Ленинградская» «Трикастен»

Минусы АЭС 1. Тепловое загрязнение окружающей среды; КПД на современных АЭС составляет примерно 30 -35%, а на ТЭЦ 35 -40%. Это означает, что большая часть тепловой энергии (60 -70 %) выбрасывается в окружающую среду. 2. Утечка радиоактивности (радиоактивные выбросы и сбросы) 3. Транспортировка радиоактивных отходов; 4. Аварии ядерных реакторов;

Кроме того, больший удельный (на единицу произведенной электроэнергии) выброс радиоактивных веществ даёт угольная станция. В угле всегда содержатся природные радиоактивные вещества, при сжигании угля они практически полностью попадают во внешнюю среду. При этом удельная активность выбросов ТЭС в несколько раз выше, чем для АЭС

Объем радиоактивных отходов очень мал, они весьма компактны, и их можно хранить в условиях, гарантирующих отсутствие утечки наружу.

Затраты на строительство АЭС находятся примерно на таком же уровне, как и строительство ТЭС, или несколько выше. Билибинская АЭС - единственная в зоне вечной мерзлоты атомная электростанция.

АЭС экономичнее обычных тепловых станций, а, самое главное, при правильной их эксплуатации – это чистые источники энергии.

Мирный атом должен жить! Атомная энергетика, испытав тяжёлые уроки Чернобыля и других аварий, продолжает развиваться, максимально обеспечивая безопасность и надёжность! Атомные станции вырабатывают электроэнергию самым экологически чистым способом. Если люди будут ответственно и грамотноситься к эксплуатации АЭС, то будущееза ядерной энергетикой. Люди не должны бояться мирного атома, ведь аварии происходят по вине человека.

Просмотров