Двухступенчатые испарительное охлаждение кондиционирование. Как работают кондиционеры на воде

В современной климатической технике большое внимание уделяется энергоэффективности оборудования. Этим объясняется возросший в последнее время интерес к водоиспарительным системам охлаждения на основе косвенно-испарительных теплообменных аппаратов (косвенно-испарительные системы охлаждения). Водоиспарительные системы охлаждения могут оказаться эффективным решением для многих регионов нашей страны, климат которых отличается относительно низкой влажностью воздуха. Вода как хладагент уникальна — она обладает большой теплоемкостью и скрытой теплотой парообразования, безвредна и доступна. Кроме того, вода хорошо изучена, что позволяет достаточно точно предсказывать ее поведение в различных технических системах.

Особенности систем охлаждения с косвенно-испарительными теплообменниками

Главной особенностью и преимуществом косвенно-испарительных систем является возможность охлаждения воздуха до температуры ниже температуры мокрого термометра. Так, технология обычного испарительного охлаждения (в увлажнителях адиабатного типа), когда в поток воздуха впрыскивается вода, не только понижает температуру воздуха, но и увеличивает его влагосодержание. При этом линия процесса на I d-диаграмме влажного воздуха идет по адиабате, а минимально возможная температура соответствует точке «2» (рис. 1).

В косвенно-испарительных же системах воздух может быть охлажден до точки «3» (рис. 1). Процесс на диаграмме в данном случае идет вертикально вниз по линии постоянного влагосодержания. В результате получаемая температура оказывается ниже, а влагосодержание воздуха не растет (остается постоянным).

Кроме того, водоиспарительные системы обладают следующими положительными качествами:

  • Возможность совместного получения охлажденного воздуха и холодной воды.
  • Малое энергопотребление. Основными потребителями электроэнергии являются вентиляторы и водяные насосы.
  • Высокая надежность, обусловленная отсутствием сложных машин и использованием неагрессивного рабочего тела — воды.
  • Экологическая чистота: низкий уровень шума и вибраций, неагрессивное рабочее тело, малая экологическая вредность промышленного производства системы в силу малой трудоемкости изготовления.
  • Простота конструктивного исполнения и относительно низкая стоимость, связанные с отсутствием жестких требований к герметичности системы и ее отдельных узлов, отсутствием сложных и дорогих машин (холодильных компрессоров), малыми избыточными давлениями в цикле, низкой металлоемкостью и возможностью широкого использования пластмасс.

Системы охлаждения, использующие эффект поглощения теплоты при испарении воды, известны очень давно. Однако на данный момент водоиспарительные системы охлаждения распространены недостаточно широко. Практически вся ниша промышленных и бытовых систем охлаждения в области умеренных температур заполнена хладоновыми парокомпрессионными системами.

Такая ситуация, очевидно, связана с проблемами эксплуатации водоиспарительных систем при отрицательных температурах и их непригодностью к эксплуатации при высокой относительной влажности наружного воздуха. Сказалось и то, что основные аппараты подобных систем (градирни, теплообменники), использовавшиеся ранее, обладали большими габаритами, массой и другими недостатками, связанными с работой в условиях высокой влажности. Кроме того, им требовалась система водоподготовки.

Однако сегодня благодаря техническому прогрессу получили распространение высокоэффективные и компактные градирни, способные охладить воду до температур, всего на 0,8 … 1,0° С отличающихся от температуры входящего в градирню воздушного потока по мокрому термометру.

Здесь особым образом следует отметить градирни компаний Muntes и SRH-Lauer . Такой малый температурный напор удалось обеспечить главным образом за счет оригинальной конструкции насадки градирни, обладающей уникальными свойствами — хорошей смачиваемостью, технологичностью, компактностью.

Описание системы косвенно-испарительного охлаждения

В системе косвенно-испарительного охлаждения атмосферный воздух из окружающей среды с параметрами, соответствующими точке «0» (рис. 4), нагнетается вентилятором в систему и охлаждается при постоянном влагосодержании в косвенно-испарительном теплообменнике.

После теплообменника основной поток воздуха разделяется на два: вспомогательный и рабочий, направляемый к потребителю.

Вспомогательный поток одновременно играет роль и охладителя, и охлаждаемого потока — после теплообменника он направляется обратно, навстречу основному потоку (рис. 2).

При этом в каналы вспомогательного потока подается вода. Смысл подачи воды заключается в «замедлении» роста температуры воздуха за счет параллельного его увлажнения: как известно, одного и того же изменения тепловой энергии можно достичь как изменением только температуры, так и изменением температуры и влажности одновременно. Поэтому при увлажнении вспомогательного потока тот же обмен теплом достигается меньшим изменением температуры.

В косвенно-испарительных теплообменниках другого вида (рис. 3) вспомогательный поток направляется не в теплообменник, а в градирню, где охлаждает воду, циркулирующую через косвенно-испарительный теплообменник: вода нагревается в нем за счет основного потока и остывает в градирне за счет вспомогательного. Перемещение воды по контуру осуществляется с помощью циркуляционного насоса.

Расчет косвенно-испарительного теплообменника

Для того чтобы рассчитать цикл косвенно-испарительной системы охлаждения с циркулирующей водой, необходимы следующие исходные данные:
  • φ ос — относительная влажность воздуха окружающей среды, %;
  • t ос — температура воздуха окружающей среды, ° С;
  • ∆t х — разность температур на холодном конце теплообменника, ° С;
  • ∆t m — разность температур на теплом конце теплообменника, ° С;
  • ∆t wгр — разность между температурой воды, выходящей из градирни, и температурой подаваемого в нее воздуха по мокрому термометру, ° С;
  • ∆t min — минимальная разность температур (температурный напор) между потоками в градирне (∆t min <∆t wгр), ° С;
  • G р — требуемый потребителем массовый расход воздуха, кг/с;
  • η в — КПД вентилятора;
  • ∆P в — потеря давления в аппаратах и магистралях системы (требуемый напор вентилятора), Па.

Методика расчета основана на следующих допущениях:

  • Процессы тепло-массообмена приняты равновесными,
  • На всех участках системы отсутствуют внешние теплопритоки,
  • Давление воздуха в системе равно атмосферному (локальные изменения давления воздуха вследствие его нагнетания вентилятором или прохождения через аэродинамические сопротивления пренебрежимо малы, что позволяет использовать I d диаграмму влажного воздуха для атмосферного давления на всем протяжении расчета системы).

Порядок инженерного расчета рассматриваемой системы заключается в следующем (рисунок 4):

1. По I d диаграмме или с помощью программы расчета влажного воздуха определяются дополнительные параметры окружающего воздуха (точка «0» на рис. 4): удельная энтальпия воздуха i 0 , Дж/кг и влагосодержание d 0 , кг/кг.
2. Приращение удельной энтальпии воздуха в вентиляторе (Дж/кг) зависит от типа вентилятора. Если электродвигатель вентилятора не обдувается (не охлаждается) основным потоком воздуха, тогда:

Если в схеме используется вентилятор канального типа (когда электродвигатель охлаждается основным потоком воздуха), то:

где:
η дв — КПД электродвигателя;
ρ 0 — плотность воздуха на входе в вентилятор, кг/м 3

где:
B 0 — барометрическое давление окружающей среды, Па;
R в — газовая постоянная воздуха, равная 287 Дж/(кг.К).

3. Удельная энтальпия воздуха после вентилятора (точка «1»), Дж/кг.

i 1 = i 0 +∆i в; (3)

Поскольку процесс «0-1» происходит при постоянном влагосодержании (d 1 =d 0 =const), то по известным φ 0 , t 0 , i 0 , i 1 определяем температуру воздуха t1 после вентилятора (точка «1»).

4. Точка росы окружающего воздуха t рос, °С, определяется по известным φ 0 , t 0 .

5. Психрометрическая разность температур воздуха основного потока на выходе из теплообменника (точка «2») ∆t 2-4 , °С

∆t 2-4 =∆t x +∆t wгр; (4)

где:
∆t х назначается, исходя из конкретных условий работы в диапазоне ~ (0,5…5,0), °С. При этом следует иметь в виду, что малые значения ∆t х повлекут за собой относительно большие размеры теплообменного аппарата. Для обеспечения малых значений ∆t х необходимо использовать высокоэффективные теплопередающие поверхности;

∆t wгр выбирается в диапазоне (0,8…3,0), °С; меньшие значения ∆t wгр следует принимать в случае необходимости получения минимально возможной температуры холодной воды в градирне.

6. Принимаем, что процесс увлажнения вспомогательного воздушного потока в градирне от состояния «2-4», с достаточной точностью для инженерных расчетов, идет по линии i 2 =i 4 =const.

В этом случае, зная величину ∆t 2-4 , определяем температуры t 2 и t 4 , точек «2» и «4» соответственно, °С. Для этого найдем такую линию i=const, чтобы между точкой «2» и точкой «4» разность температур составляла найденную ∆t 2-4 . Точка «2» при этом находится на пересечении линий i 2 =i 4 =const и постоянного влагосодержания d 2 =d 1 =d ОС. Точка «4» находится на пересечении линии i 2 =i 4 =const и кривой φ 4 = 100 % относительной влажности.

Таким образом, используя приведенные диаграммы, определяем оставшиеся параметры в точках «2» и «4».

7. Определяем t 1w — температуру воды на выходе из градирни, в точке «1w», °С. В расчетах можно пренебречь нагревом воды в насосе, следовательно, на входе в теплообменник (точка «1w’») вода будет иметь ту же температуру t 1w

t 1w =t 4 +.∆t wгр; (5)

8. t 2w — температура воды после теплообменника на входе в градирню (точка «2w»), °С

t 2w =t 1 -.∆t m ; (6)

9. Температура воздуха, выбрасываемого из градирни в окружающую среду (точка «5») t 5 определяется графоаналитическим методом с использованием i d диаграммы (c большим удобством может быть использована совокупность Q t и i t-диаграмм, однако они менее распространены, поэтому в данном расчете использована i d диаграмма). Указанный метод заключается в следующем (рис. 5):

  • точка «1w», характеризующая состояние воды на входе в косвенно-испарительный теплообменник, cо значением удельной энтальпии точки «4» помещается на изотерму t 1w , отстоящую от изотермы t 4 на расстоянии ∆t wгр.
  • От точки «1w» вдоль изоэнтальпы откладываем отрезок «1w — p» так, чтобы t p = t 1w — ∆t min .
  • Зная, что процесс нагрева воздуха в градирне происходит по φ=const=100 %, строим из точки «p» касательную к φ пр =1 и получаем точку касания «k».
  • От точки касания «k» по изоэнтальпе (адиабате, i=const) откладываем отрезок «k — n» так, чтобы t n = t k + ∆t min . Таким образом, обеспечивается (назначается) минимальная разность температур между охлаждаемой водой и воздухом вспомогательного потока в градирне. Эта разность температур гарантирует работоспособность градирни в расчетном режиме.
  • Проводим из точки «1w» через точку «n» прямую до пересечения с прямой t=const= t 2w . Получаем точку «2w».
  • Из точки «2w» проводим прямую i=const до пересечения с φ пр =const=100%. Получаем точку «5», характеризующую состояние воздуха на выходе из градирни.
  • По диаграмме определяем искомую температуру t5 и остальные параметры точки «5».

10. Составляем систему уравнений для нахождения неизвестных массовых расходов воздуха и воды. Тепловая нагрузка градирни по вспомогательному воздушному потоку, Вт:

Q гр =G в (i 5 - i 2) ; (7)

Q wгр =G ow C pw (t 2w - t 1w) ; (8)

где:
С pw — удельная теплоемкость воды, Дж/(кг.К).

Тепловая нагрузка теплообменника по основному воздушному потоку, Вт:

Q mo =G o (i 1 - i 2) ; (9)

Тепловая нагрузка теплообменника по водяному потоку, Вт:

Q wmo =G ow C pw (t 2w - t 1w) ; (10)

Материальный баланс по воздушным потокам:

G o =G в +G p ; (11)

Тепловой баланс по градирне:

Q гр =Q wгр; (12)

Тепловой баланс теплообменника в целом (количество переданной теплоты каждым из потоков одинаково):

Q wmo =Q mo ; (13)

Совместный тепловой баланс градирни и теплообменника по воде:

Q wгр =Q wmo ; (14)

11. Решая совместно уравнения с (7) по (14), получим следующие зависимости:
массовый расход воздуха по вспомогательному потоку, кг/с:

массовый расход воздуха по основному воздушному потоку, кг/с:

G o =G p ; (16)

Массовый расход воды через градирню по основному потоку, кг/с:

12. Количество воды, необходимое для подпитки водяного контура градирни, кг/с:

G wn =(d 5 -d 2)G в; (18)

13. Потребляемая мощность в цикле определяется мощностью, затрачиваемой на привод вентилятора, Вт:

N в =G o ∆i в; (19)

Таким образом, найдены все параметры, необходимые для конструктивных расчетов элементов системы косвенно-испарительного охлаждения воздуха.

Отметим, что подаваемый потребителю рабочий поток охлажденного воздуха (точка «2») может быть дополнительно охлажден, например, адиабатным увлажнением либо любым другим способом. В качестве примера на рис. 4 обозначена точка «3*», соответствующая адиабатному увлажнению. В этом случае точки «3*» и «4» совпадают (рис. 4).

Практические аспекты косвенно-испарительных систем охлаждения

Исходя из практики расчетов косвенно-испарительных систем охлаждения, следует заметить, что, как правило, расход вспомогательного потока составляет 30-70% от основного и зависит от потенциальной способности к охлаждению подаваемого в систему воздуха.

Если сравнить охлаждение адиабатным и косвенно-испарительным методами, то из I d-диаграммы видно, что в первом случае воздух с температурой 28 °С и относительной влажностью 45% может быть охлажден до 19,5°С, в то время как во втором случае — до 15°С (рис. 6).

«Псевдокосвенное» испарение

Как уже говорилось выше, косвенно-испарительная система охлаждения позволяет добиться более низкой температуры, чем традиционная система адиабатного увлажнения воздуха. Немаловажно также подчеркнуть, что влагосодержание искомого воздуха не изменяется. Подобных преимуществ по сравнению с адиабатным увлажнением удается достигнуть за счет внедрения вспомогательного потока воздуха.

Практических применений системы косвенно-испарительного охлаждения на данный момент мало. Однако появились аппараты сходного, но несколько другого принципа действия: воздухо-воздушных теплообменных аппаратов с адиабатным увлажнением наружного воздуха (системы «псевдокосвенного» испарения, где вторым потоком в теплообменнике служит не некоторая увлажненная часть основного потока, а другой, абсолютно независимый контур).

Подобные устройства находят применение в системах с большим объемом рециркуляционного воздуха, нуждающегося в охлаждении: в системах кондиционирования воздуха поездов, зрительных залов различного назначения, центрах обработки данных и на других объектах.

Цель их внедрения — максимально возможное снижение длительности работы энергоемкого компрессорного холодильного оборудования. Вместо этого при наружных температурах вплоть до 25°С (а иногда и выше), используется воздухо-воздушный теплообменник, в котором рециркуляционный воздух помещения охлаждается наружным воздухом.

Для большей эффективности работы аппарата наружный воздух предварительно увлажняется. В более сложных системах увлажнение производится и в процессе теплообмена (впрыск воды в каналы теплообменника), чем достигается дополнительное повышение его эффективности.

Благодаря использованию таких решений текущее энергопотребление системы кондиционирования снижается на величину до 80%. Общегодовое энергопотребление зависит от климатического района эксплуатации системы, в среднем оно снижается на 30-60%.

Юрий Хомутский, технический редактор журнала «Мир климата»

В статье использована методика МГТУ им. Н. Э. Баумана для расчета косвенно-испарительной системы охлаждения.

В системах отопления, вентиляции и кондиционирования адиабатическое испарение обычно ассоциируется с увлажнением воздуха, однако в последнее время данный процесс приобретает растущую популярность в самых разных странах мира и все чаще применяется для «естественного» охлаждения воздуха.

ЧТО ТАКОЕ ИСПАРИТЕЛЬНОЕ ОХЛАЖДЕНИЕ?

Испарительное охлаждение лежит в основе одной из самых первых придуманных человеком систем охлаждения пространства, где охлаждение воздуха происходит за счет естественного испарения воды. Данное явление очень распространено и встречается повсеместно: одним из примеров может быть ощущение холода, которое вы испытываете, когда вода испаряется с поверхности вашего тела под воздействием ветра. То же самое происходит и с воздухом, в котором распыляется вода: поскольку данный процесс происходит без внешнего источника энергии (именно это и означает слово «адиабатический»), тепло, необходимое для испарения воды, берется из воздуха, который, соответственно, становится холоднее.

Использование такого способа охлаждения в современных системах кондиционирования обеспечивает высокую холодопроизводительность при низком электропотреблении, поскольку в этом случае электричество расходуется только для поддержания процесса испарения воды. В то же время в качестве охладителя вместо химических составов используется обычная вода, что делает испарительное охлаждение более выгодным экономически и не наносит вреда экологии.

ВИДЫ ИСПАРИТЕЛЬНОГО ОХЛАЖДЕНИЯ

Существует два основных способа испарительного охлаждения - прямое и косвенное.

Прямое испарительное охлаждение

Прямое испарительное охлаждение – это процесс снижения температуры воздуха в помещении с помощью его непосредственного увлажнения. Другими словами, за счет испарения распыленной воды происходит охлаждение окружающего воздуха. При этом раздача влаги осуществляется либо непосредственно в помещении с помощью промышленных увлажнителей и форсунок, либо за счет насыщения приточного воздуха влагой и его охлаждения в секции вентиляционной установки.

Следует заметить, что в условиях прямого испарительного охлаждения неизбежно значительное повышение влажности приточного воздуха внутри помещения, поэтому для оценки применимости данного способа рекомендуется брать за основу формулу, известную как «показатель температуры и дискомфорта». По формуле вычисляется комфортная температура в градусах Цельсия с учетом влажности и показаний температуры по сухому термометру (таблица 1). Забегая вперед, отметим, что система прямого испарительного охлаждения применяется только в тех случаях, когда уличный воздух в летний период имеет высокие значения температуры по сухому термометру и низкий абсолютный уровень влажности.

Косвенное испарительное охлаждение

Для повышения эффективности испарительного охлаждения при высокой влажности уличного воздуха рекомендуется сочетать испарительное охлаждение с рекуперацией тепла. Данная технология известна как «косвенное испарительное охлаждение» и подходит практически для любой страны мира, включая страны с очень влажным климатом.

Общая схема работы приточно-вентиляционной системы с рекуперацией заключается в том, что горячий приточный воздух, проходя через специальную теплообменную кассету, охлаждается за счет прохладного воздуха, удаляемого из помещения. Принцип работы косвенного испарительного охлаждения заключается в установке системы адиабатического увлажнения в вытяжном канале приточно-вытяжных центральных кондиционеров, с последующей передачей холода через рекуператор приточному воздуху.

Как показано на примере, за счет использования пластинчатого рекуператора уличный воздух в системе вентиляции охлаждается на 6 °С. Применение испарительного охлаждения вытяжного воздуха увеличит разность температур с 6°C до 10°C без роста потребления электроэнергии и уровня влажности в помещении. Применение косвенного испарительного охлаждения эффективно при высоких теплопритоках, например в офисных и торговых центрах, ЦОДах, производственных помещениях и т.д.

Система косвенного охлаждения с применением адиабатического увлажнителя CAREL серии humiFog:

Кейс: Оценка затрат косвенной системы адиабатического охлаждения по сравнению с охлаждением с использованием чиллеров.

На примере офисного центра с постоянным пребыванием 2000 человек.

Условия расчета
Уличная температура и влагосодержание: +32ºС, 10,12 г/кг (показатели взяты для г. Москвы)
Температура воздуха в помещении: +20 ºС
Вентиляционная система: 4 приточно-вытяжные установки производительностью 30 000 м3/ч (подача воздуха по санитарным нормам)
Мощность системы охлаждения с учетом вентиляции: 2500 кВт
Температура приточного воздуха: +20 ºС
Температура вытяжного воздуха: +23 ºС
Эффективность рекуперации по явному теплу: 65%
Централизованная система охлаждения: Система чиллер-фанкойл с температурой воды 7/12ºС

Расчет

  • Для расчета вычисляем относительную влажность воздуха на вытяжке.
  • При температуре в системе охлаждения 7/12 °С точка росы вытяжного воздуха с учетом внутренних влаговыделений составит +8 °С.
  • Относительная влажность воздуха на вытяжке составит 38%.

*Необходимо учитывать, что стоимость монтажа системы холодоснабжения с учетом всех затрат существенно выше по сравнению с системами косвенного охлаждения.

Капитальные затраты

Для анализа берем стоимость оборудования – чиллеров для системы холодоснабжения и системы увлажнения для косвенного испарительного охлаждения.

  • Капитальные затраты на охлаждение приточного воздуха для системы с косвенным охлаждением.

Стоимость одной стойки увлажнения Optimist производства Carel (Италия) в приточно-вытяжной установке составляет 7570 €.

  • Капитальные затраты на охлаждение приточного воздуха без системы косвенного охлаждения.

Стоимость чиллера мощностью охлаждения 62,3 кВт составляет примерно 12 460 €, исходя из стоимости 200 € за 1 кВт холодильной мощности. Необходимо учитывать, что стоимость монтажа системы холодоснабжения с учетом всех затрат существенно выше по сравнению с системами косвенного охлаждения.

Эксплуатационные затраты

Для анализа принимаем стоимость водопроводной воды 0,4 € за 1 м3 и стоимость электроэнергии 0,09 € за 1 кВт/ч.

  • Эксплуатационные расходы на охлаждение приточного воздуха для системы с косвенным охлаждением.

Расход воды на косвенное охлаждение составляет 117 кг/ч для одной приточно-вытяжной установки, с учетом потерь 10% примем ее как 130 кг/ч.

Потребляемая мощность системы увлажнения составляет 0,375 кВт для одной приточно-вытяжной установки.

Итоговые затраты в час составляют 0,343 € за 1 час эксплуатации системы.

  • Эксплуатационные расходы на охлаждение приточного воздуха без системы косвенного охлаждения.
Требуемая холодильная мощность составляет 62,3 кВт на одну приточно-вытяжную установку.

Холодильный коэффициент берем равным 3 (соотношение мощности охлаждения к потребляемой мощности).

Итоговые затраты в час составляют 7,48 € за 1 час эксплуатации.

Вывод

Использование косвенного испарительного охлаждения позволяет:

Снизить капитальные затраты на охлаждение приточного воздуха на 39%.

Снизить энергопотребление на системы кондиционирования здания с 729 кВт до 647 кВт, или на 11,3%.

Снизить эксплуатационные расходы на системы кондиционирования здания с 65,61 €/час до 58,47 €/час, или на 10,9%.

Таким образом, несмотря на то, что охлаждение свежего воздуха составляет примерно 10–20% от общей потребности в охлаждении офисных и торговых центров, именно здесь имеются наибольшие резервы в повышении энергоэффективности здания без существенного роста капитальных затрат.

Статья подготовлена специалистами компании ТЕРМОКОМ для публикации в журнале ON №6-7 (5) июнь-июль 2014 (стр.30-35)

Для обслуживания отдельных небольших помещений или их групп удобны местные кондиционеры двухступенчатого испарительного охлаждения, осуществляемые на базе теплообменника косвенного испарительного охлаждения из алюминиевых накатных трубок (рис. 139). Воздух очищается в фильтре 1 и поступает к вентилятору 2, после нагнетательного отверстия которого делится на два потока - основной 3 и вспомогательный 6. Вспомогательный поток воздуха проходит внутри трубок теплообменника 14 косвенного испарительного охлаждения и обеспечивает испарительное охлаждение воды, стекающей по внутренним стенкам трубок. Основной поток воздуха проходит со стороны оребрения трубок теплообменника и отдает через их стенки тепло воде, охлаждаемой испарением. Рециркуляция воды в теплообменнике осуществляется при помощи насоса 4, который забирает воду из поддона 5 и подает ее на орошение через перфорированные трубки 15. Теплообменник косвенного испарительного охлаждения выполняет в совмещенных кондиционерах двухступенчатого испарительного охлаждения роль первой ступени.

полнительное к авт. свид-ву Кл,В 60 Ь 3/04 210627 22) Заявлено 03.01.7 присоединением заявки3) Приоритет судврственныи нвмитетавета Министрав СССРпо делам изоервтенийн открытий Бюллетень47 3) Опубликовано 25.1 629,113.06,628.) Дата опубликования описания О 3 О 3 2) Автор изобре В. В. Уткин Специализированное конструкторское баро по специальным гусеничным тракторам класса 2 Г тяги(54) КОНДИЦИОНЕР ДВУСТУПЕНЧАТОГО ИСПАРИТЕЛЫ 1 ОГО ОХЛАЖДЕ 11 И пенчатогожашие воун очную й в теп наломОднако ения 10 ффективности испарительуночная камера для шей в теплообменник Изобретение касается транспортсредств,Известны кондиционеры двустуиспарительного охлаждения, содердовоздушный теплообменник и форскамеру для охлаждения поступаюшелообменник воды, выполненную с кподачи воздуха от теплообменника.эффективность испарительного охланедостаточна.Для повышения эное охлаждение 1 форсохлаждения поступаю воды снабжена каналом для подачи воздухаиз внешней среды, отделенным волнообраз- цной перегородкой от канала подачи воздухаот теплообменника, при эом оба каналавыполнены сужаюшимися по направлению ковходному отверстию форсуночной камеры.На фиг, 1 изображен предлагаемый кон диционер, продольный разрез; на фиг. 2 -разрез по А-А на фиг. 1.Кондиционер состоит из вентилятора 1,приводимого во вращение двигателем 2;водовоздушного теплообменника 3 и форсу- б ночной камеры 4, снабженной каплеуловите лем 5, В форсуночной камере 4 установлены два ряда форсунок 6, Форсуночная камера имеет входное 7 и выходное 8 отверстия и воздушный канал 9. Для циркуляции воды в первой ступени соосно с двигателем установлен водяной насос 10, подающий воду по трубопроводам 11 и 12 из бака 13 в форсунки 6,. Во второй ступени кондиционера установлен водяной насос 14, подаюший воду по трубопроводам 15 и 16 из бака 17 в распыливаюшее устройство 18, смачиваюшее орошаемую башню 19. Здесь же установлен каплеуловитель 2 О.При работе кондиционера вентилятор 1 прогоняет воздух через теплообменник 3, При этом воздух охлаждается, и часть его направляется во вторую ступень (основной поток), а часть через канал 9 - в форсуночную камеру 4, Канал 9 выполнен плавно сужаюшимся в направлении ко входному отверстию форсуночной камеры, благодаря чему скорость потока увеличивается и в зазоры 21 между каналом 9 и входным отверстием камеры 7 подсасывается3наружйый воздух, увеличивая массу вспомо гательного потока, который, пройдя камеру 4, выбрасывается в атмосферу через от верстие 8. Основной поток во второй ступени проходит башню 19 орошаемого слоя, где дополнительно охлаждается и увлажняется и через каплеуловитель 20 направляется в обслуживаемое помещение, Вода, циркулирующая в первой ступени, нагревается в теплообменнике 3, охлаждается в форсуночной камере 4, сепарируется в каплеуловителе 5 и через отверстие 22 стекает снова в бак 13. Вода во второй ступени после орошения башни 19 и сепарации в каплеуловителе 20 через отверстие 28 стекает в бак 17.Формула изобретения1, Кондиционер двуступенчатого испарительного охлаждения, преимушественно для. 4транспортного средства, содержаший водовоздушный теплообменник и форсуночнуюкамеру для охлаждения поступающего в: теплообменник воды, выполненного с кана лом подачи воздуха от теплообменника,о т л и ч а ю ш ий с я тем, что, сцелью повышения эффективности испарительного охлаждения, форсуночная камера дляохлаждения поступаюшей в теплообменник 10 воды снабжена каналом для подачи воздуха из внешней среды, отделенным перегородкой от канала подачи воздуха от теплообменника, при атом оба канала выполнены сужающимися по направлению ко 15 входному отверстию камеры.2. Кондицйонер по п. 1, о т л и ч аю ш и й с я тем, чтоперегородка выпол нена волнообразной.а

Заявка

1982106, 03.01.1974

СПЕЦИАЛИЗИРОВАННОЕ КОНСТРУКТОРСКОЕ БЮРО ПО СПЕЦИАЛЬНЫМ ГУСЕНИЧНЫМ ТРАКТОРАМ КЛАССА 2Т ТЯГИ

УТКИН ВЛАДИМИР ВИКТОРОВИЧ

МПК / Метки

Код ссылки

Кондиционер двухступенчатого испарительного охлаждения

Похожие патенты

13 - 15 теплообменников 10 - 12 сообщены с полостью А отливной камеры 16, полость Б которой со- з общена трубопроводом 17 с кингстонным каналом 3. Коллектор 6 гидравлическим связан с емкостью 18, которая трубопроводом 19 сообщена с отливной камерой 16, имеющей забортное отверстие 20 и отверстие 21 в перегородке между полостями А и Б.Система работает следующим образом.Охлаждающий насос 4 принимает воду, поступающую в кингстонный канал 3 через перемычку 2 из кингстонного ящика 1, и подает ее по напорным трубопроводам 5 и 7 -- 9 через коллектор 6 к теплообменникам 10 - 12, из которых подогретая вода по отливным трубопроводам 13 - 15 поступает в полость А отливной камеры 16. При заполнении полости А вода через отверстие 21 переливается в...

Эа счет теплового излучения от поверхности нагретой полосы непосредственно к рабочей поверхности холодильника, расположенной сверху и снизу обрабатываемого металла с максимальными угловыми коэффициентами излучения,На фиг,1 показано устройство для охлаждения полось в ермической печи, разрез Б-Б на фиг.2; ия Фиг,2камера конвективного охлаждения по" лосы, разрез А-А на Фиг.1; на фиг.3- конструкция кольцевого газового сопла.Устройство для охлаждения полосы 1, движущейся по Роликам 2, уста" навливается в термическом агрегате после камеры радиационного охлажде" ния 3 и уплотняется при выходе полосы затвором 4, По обе стороны от обрабатываемой полосы расположены цилиндрические водоохлаждаемые поверхности 5, Циркуляционный вентилятор 6...

6 с охладителями 7 и 8 масла и пресной воды и ветвь 9 с охладителем 10 наддувочного воздуха и глушителем 11. Вода из ветви 6 сливается через отливной киигстон 12, а из ветви 9 - через трубу 13 в бортовой патрубок 14 глушителя 11. Автоматическое гидравличес О кое сопротивление 15, установленное на ветви 6, состоит из корпуса 16 переменного проходного сечения, конусообразной тарелки 17 со штоком 18, направляющей втулки 19, закрепленной на корпусе 16 стойками 20, пружины 21 и регулировочных гаек 22.Система работает следующим образом.Насос 4 забортной воды забирает воду через приемный кингстон 2 и фильтр 3 и нагнетает ее по ветви 6 на охладители 7 и 8 масла и пресной воды. По другой параллель- ЗО ной ветви 9 вода подается на охладитель...

Просмотров