Теплотехнический расчет здания из каменной кладки. Пример теплотехнического расчета наружной стены

Требуется определить толщину утеплителя в трехслойной кирпичной наружной стене в жилом здании, расположенном в г. Омске. Конструкция стены: внутренний слойкирпичная кладка из обыкновенного глиняного кирпича толщиной 250 мм и плотностью 1800 кг/м 3 , наружный слой – кирпичная кладка из облицовочного кирпича толщиной 120 мм и плотностью 1800 кг/м 3 ; между наружным и внутренними слоями расположен эффективный утеплитель из пенополистирола плотностью 40 кг/м 3 ; наружный и внутренний слои соединяются между собой стеклопластиковыми гибкими связями диаметром 8 мм, расположенными с шагом 0,6 м.

1. Исходные данные

Назначение здания – жилой дом

Район строительства – г. Омск

Расчетная температура внутреннего воздуха t int = плюс 20 0 С

Расчетная температура наружного воздуха t ext = минус 37 0 С

Расчетная влажность внутреннего воздуха – 55%

2. Определение нормируемого сопротивления теплопередаче

Определяется по таблице 4 в зависимости от градусо-суток отопительного периода. Градусо-сутки отопительного периода, D d , °С×сут, определяют по формуле 1, исходя из средней температуры наружного воздуха и продолжительности отопительного периода.

По СНиП 23-01-99* определяем, что в г. Омске средняя температура наружного воздуха отопительного периода равна: t ht = -8,4 0 С , продолжительность отопительного периода z ht = 221 сут. Величина градусо-суток отопительного периода равна:

D d = (t int - t ht ) z ht = (20 + 8,4)×221 = 6276 0 С сут.

Согласно табл. 4. нормируемое сопротивление теплопередаче R reg наружных стен для жилых зданий соответствующее значению D d = 6276 0 С сут равно R reg = a D d + b = 0,00035×6276 + 1,4 = 3,60 м 2 0 С/Вт.

3. Выбор конструктивного решения наружной стены

Конструктивное решение наружной стены предложено в задании и представляет собой трехслойное ограждение с внутренним слоем из кирпичной кладки толщиной 250 мм, наружным слоем из кирпичной кладки толщиной 120 мм, между наружным и внутренним слоем расположен утеплитель из пенополистирола. Наружный и внутренний слой соединяются между собой гибкими связями из стеклопластика диаметром 8 мм, расположенными с шагом 0,6 м.



4. Определение толщины утеплителя

Толщина утеплителя определяется по формуле 7:

d ут = (R reg ./r – 1/a int – d кк /l кк – 1/a ext)× l ут

где R reg . – нормируемое сопротивление теплопередаче, м 2 0 С/Вт; r – коэффициент теплотехнической однородности; a int – коэффициент теплоотдачи внутренней поверхности, Вт/(м 2 ×°С); a ext – коэффициент теплоотдачи наружной поверхности, Вт/(м 2 ×°С); d кк – толщина кирпичной кладки, м ; l кк – расчетный коэффициент теплопроводности кирпичной кладки, Вт/(м×°С) ; l ут – расчетный коэффициент теплопроводности утеплителя, Вт/(м×°С) .

Нормируемое сопротивление теплопередаче определено: R reg = 3,60 м 2 0 С/Вт.

Коэффициент теплотехнической однородности для кирпичной трехслойной стены со стеклопластиковыми гибкими связями составляет около r=0,995 , и в расчетах может не учитываться (для информации – если применили стальные гибкие связи, то коэффициент теплотехнической однородности может достигать 0,6-0,7) .

Коэффициент теплоотдачи внутренней поверхности определяется по табл. 7 a int = 8,7 Вт/(м 2 ×°С).

Коэффициент теплоотдачи наружной поверхности принимается по таблице 8 a е xt = 23 Вт/(м 2 ×°С).

Суммарная толщина кирпичной кладки составляет 370 мм или 0,37 м.

Расчетные коэффициенты теплопроводности используемых материалов определяются в зависимости от условий эксплуатации (А или Б). Условия эксплуатации определяются в следующей последовательности:

По табл. 1 определяем влажностный режим помещений: так как расчетная температура внутреннего воздуха +20 0 С, расчетная влажность 55%, влажностный режим помещений – нормальный;

По приложению В (карта РФ) определяем, что г. Омск расположен в сухой зоне;

По табл. 2 , в зависимости от зоны влажности и влажностного режима помещений, определяем, что условия эксплуатации ограждающих конструкций – А .

По прил. Д определяем коэффициенты теплопроводности для условий эксплуатации А: для пенополистирола ГОСТ 15588-86 плотностью 40 кг/м 3 l ут = 0,041 Вт/(м×°С) ; для кирпичной кладки из глиняного обыкновенного кирпича на цементно-песчаном растворе плотностью 1800 кг/м 3 l кк = 0,7 Вт/(м×°С) .

Подставим все определенные значения в формулу 7 и рассчитываем минимальную толщину утеплителя из пенополистирола:

d ут = (3,60 – 1/8,7 – 0,37/0,7 – 1/23)× 0,041 = 0,1194 м

Округляем полученное значение в большую сторону с точностью до 0,01 м: d ут = 0,12 м. Выполняем проверочный расчет по формуле 5:

R 0 = (1/a i + d кк /l кк + d ут /l ут + 1/a e)

R 0 = (1/8,7 + 0,37/0,7 + 0,12/0,041 + 1/23) = 3,61 м 2 0 С/Вт

5. Ограничение температуры и конденсации влаги на внутренней поверхности ограждающей конструкции

Δt o , °С, между температурой внутреннего воздуха и температурой внутренней поверхности ограждающей конструкции не должен превышать нормируемых величин Δt n , °С, установленных в таблице 5 , и определен следующим образом

Δt o = n(t int t ext )/( R 0 a int) = 1(20+37)/(3,61 х 8,7) = 1,8 0 С т.е. меньше, чем Δt n , = 4,0 0 С, определенное по таблице 5 .

Вывод: т олщина утеплителя из пенополистирола в трехслойной кирпичной стене составляет 120 мм. При этом сопротивление теплопередаче наружной стены R 0 = 3,61 м 2 0 С/Вт , что больше нормируемого сопротивления теплопередаче R reg . = 3,60 м 2 0 С/Вт на 0,01м 2 0 С/Вт. Расчетный температурный перепад Δt o , °С, между температурой внутреннего воздуха и температурой внутренней поверхности ограждающей конструкции не превышает нормативное значение Δt n , .

Пример теплотехнический расчета светопрозрачных ограждающих конструкций

Светопрозрачные ограждающие конструкции (окна) подбирают по следующей методике.

Нормируемое сопротивление теплопередаче R reg определяется по таблице 4 СНиП 23-02-2003 (колонка 6) в зависимости от градусо-суток отопительного периода D d . При этом тип здания и D d принимают как в предыдущем примере теплотехнического расчета светонепрозрачных ограждающих конструкций. В нашем случае D d = 6276 0 С сут, тогда для окна жилого дома R reg = a D d + b = 0,00005×6276 + 0,3 = 0,61 м 2 0 С/Вт.

Выбор светопрозрачных конструкций осуществляется по значению приведенного сопротивления теплопередаче R o r , полученному в результате сертификационных испытаний или по приложению Л Свода правил . Если приведенное сопротивление теплопередаче выбранной светопрозрачной конструкции R o r , больше или равно R reg , то эта конструкция удовлетворяет требованиям норм.

Вывод: для жилого дома в г. Омске принимаем окна в ПВХ-переплетах с двухкамерными стеклопакетами из стекла с твердым селективным покрытием и заполнением аргоном межстекольного пространства у которых R о r = 0,65 м 2 0 С/Вт больше R reg = 0,61 м 2 0 С/Вт.

ЛИТЕРАТУРА

  1. СНиП 23-02-2003. Тепловая защита зданий.
  2. СП 23-101-2004. Проектирование тепловой защиты.
  3. СНиП 23-01-99*. Строительная климатология.
  4. СНиП 31-01-2003. Здания жилые многоквартирные.
  5. СНиП 2.08.02-89 * . Общественные здания и сооружения.

Чтобы в жилище было тепло в самые сильные морозы, необходимо правильно подобрать систему теплоизоляции – для этого выполняют теплотехнический расчет наружной стены.Результат вычислений показывает, насколько эффективен реальный или проектируемый способ утепления.

Как сделать теплотехнический расчет наружной стены

Вначале следует подготовить исходные данные. На расчетный параметр влияют следующие факторы:

  • климатический регион, в котором находится дом;
  • назначение помещения – жилой дом, производственное здание, больница;
  • режим эксплуатации здания – сезонный или круглогодичный;
  • наличие в конструкции дверных и оконных проемов;
  • влажность внутри помещения, разница внутренней и наружной температуры;
  • число этажей, особенности перекрытия.

После сбора и записи исходной информации определяют коэффициенты теплопроводности строительных материалов, из которых изготовлена стена. Степень усвоения тепла и теплоотдачи зависит от того, насколько сырым является климат. В связи с этим для вычисления коэффициентов используют карты влажности, составленные для Российской Федерации. После этого все числовые величины, необходимые для расчета, вводятся в соответствующие формулы.

Теплотехнический расчет наружной стены, пример для пенобетонной стены

В качестве примера рассчитываются теплозащитные свойства стены, выложенной из пеноблоков, утепленной пенополистиролом с плотностью 24 кг/м3 и оштукатуренной с двух сторон известково-песчаным раствором. Вычисления и подбор табличных данных ведутся на основании строительных правил. Исходные данные: район строительства – Москва; относительная влажность – 55%, средняя температура в доме tв = 20О С. Задается толщина каждого слоя: δ1, δ4=0,01м (штукатурка), δ2=0,2м (пенобетон), δ3=0,065м (пенополистирол «СП Радослав»).
Целью теплотехнического расчета наружной стены является определение необходимого (Rтр) и фактического (Rф) сопротивления теплопередаче.
Расчет

  1. Согласно таблице 1 СП 53.13330.2012 при заданных условиях режим влажности принимается нормальным. Требуемое значениеRтр находят по формуле:
    Rтр=a ГСОП+b,
    где a,b принимаются по таблице 3 СП 50.13330.2012. Для жилого здания и наружной стены a = 0,00035; b = 1,4.
    ГСОП – градусо-сутки отопительного периода, их находят по формуле(5.2) СП 50.13330.2012:
    ГСОП=(tв-tот)zот,
    где tв=20О С; tот – средняя температура наружного воздуха во время отопительного периода, по таблице 1 СП131.13330.2012tот = -2,2ОС; zот = 205 сут. (продолжительность отопительного сезона согласно той же таблице).
    Подставив табличные значения, находят: ГСОП = 4551О С*сут.; Rтр = 2,99 м2*С/Вт
  2. По таблице 2 СП50.13330.2012 для нормальной влажности выбирают коэффициенты теплопроводности каждого слоя «пирога»:λБ1=0,81Вт/(м°С), λБ2=0,26Вт/(м°С), λБ3=0,041Вт/(м°С), λБ4=0,81Вт/(м°С).
    По формуле E.6 СП 50.13330.2012 определяют условное сопротивление теплопередаче:
    R0усл=1/αint+δn/λn+1/αext.
    гдеαext = 23 Вт/(м2°С) из п.1 таблицы 6 СП 50.13330.2012 для наружных стен.
    Подставляя числа, получаютR0усл=2,54м2°С/Вт. Уточняют его с помощью коэффициента r=0.9, зависящего от однородности конструкций, наличия ребер, арматуры, мостиков холода:
    Rф=2,54 0,9=2,29м2 °С/Вт.

Полученный результат показывает, что фактическое теплосопротивление меньше требуемого, поэтому нужно пересмотреть конструкцию стены.

Теплотехнический расчет наружной стены, программа упрощает вычисления

Несложные компьютерные сервисы ускоряют вычислительные процессы и поиск нужных коэффициентов. Стоит ознакомиться с наиболее популярными программами.

  1. «ТеРеМок». Вводятся исходные данные: тип здания (жилой), внутренняя температура 20О, режим влажности – нормальный, район проживания – Москва. В следующем окне открывается рассчитанное значение нормативного сопротивления теплопередаче – 3,13 м2*оС/Вт.
    На основании вычисленного коэффициента происходит теплотехнический расчет наружной стены из пеноблоков (600 кг/м3), утепленной экструдированным пенополистиролом «Флурмат 200» (25 кг/м3) и оштукатуренной цементно-известковым раствором. Из меню выбирают нужные материалы, проставляя их толщину (пеноблок – 200 мм, штукатурка – 20 мм), оставив незаполненной ячейку с толщиной утеплителя.
    Нажав кнопку «Расчет», получают искомую толщину слоя теплоизолятора – 63 мм. Удобство программы не избавляет ее от недостатка: в ней не принимается во внимание разная теплопроводность кладочного материала и раствора. Спасибо автору можно сказать по этому адресу http://dmitriy.chiginskiy.ru/teremok/
  2. Вторая программа предлагается сайтом http://rascheta.net/. Ее отличие от предыдущего сервиса в том, что все толщины задаются самостоятельно. В расчет вводится коэффициент теплотехнической однородности r. Его выбирают из таблицы: для пенобетонных блоков с проволочной арматурой в горизонтальных швах r = 0,9.
    После заполнения полей программа выдает отчет о том, каково фактическое тепловое сопротивление выбранной конструкции, отвечает ли она климатическим условиям. Кроме того, предоставляется последовательность вычислений с формулами, нормативными источниками и промежуточными значениями.

При возведении дома или проведении теплоизоляционных работ важна оценка результативности утепления наружной стены: теплотехнический расчет, выполненный самостоятельно или с помощью специалиста позволяет сделать это быстро и точно.

Цель теплотехнического расчета - вычислить толщину утеплителя при заданной толщине несущей части наружной стены, отвечающей санитарно-гигиеническим требованиям и условиям энергосбережения. Иными словами – у нас есть наружные стены толщиной 640 мм из силикатного кирпича и мы собираемся их утеплить пенополистиролом, но не знаем какой толщины необходимо выбрать утеплитель, чтобы были соблюдены строительные нормы.

Теплотехнический расчет наружной стены здания выполняется в соответствии со СНиП II-3-79 «Строительная теплотехника» и СНиП 23-01-99 «Строительная климатология».

Таблица 1

Теплотехнические показатели используемых строительных материалов (по СНиП II-3-79*)

№ по схеме

Материал

Характеристика материала в сухом состоянии

Расчетные коэффициенты (при условии эксплуатации по приложению 2) СНиП II-3-79*

Плотность γ 0,

кг/м 3

Коэффициент теплопроводности λ, Вт/м*°С

Теплопроводности

λ, Вт/м*°С

Теплоусвоения (при периоде 24 ч)

S, м 2 *°С/Вт

Цементно-песчаный раствор (поз. 71)

1800

0.57

0.76

0.93

11.09

Кирпичная кладка из сплошного кирпича силикатного (ГОСТ 379-79) на цементно-песчаном растворе (поз. 87)

1800

0.88

0.76

0.87

9.77

10.90

Пенополистирол (ГОСТ 15588-70) (поз. 144)

0.038

0.038

0.041

0.41

0.49

Цементно-песчаный раствор – тонкослойная штукатурка (поз. 71)

1800

0.57

0.76

0.93

11.09

1-штукатурка внутренняя (цементно-песчаный раствор) - 20 мм

2-кирпичная стена (силикатный кирпич) - 640 мм

3-утеплитель (пенополистирол)

4-тонкослойная штукатурка (декоративный слой) - 5 мм

При выполнении теплотехнического расчёта принят нормальный влажностный режим в помещениях - условия эксплуатации («Б») в соответствии с СНиП II-3-79 т.1 и прил. 2, т.е. теплопроводность применяемых материалов берём по графе «Б».

Вычислим требуемое сопротивление теплопередаче ограждения с учетом санитарно-гигиенических и комфортных условий по формуле:

R 0 тр = (t в – t n) * n / Δ t n *α в (1)

где t в – расчётная температура внутреннего воздуха °С, принимаемая в соответствии с ГОСТ 12.1.1.005-88 и нормами проектирования

соответствующих зданий и сооружений, принимаем равной +22 °С для жилых зданий в соответствии с приложением 4 к СНиП 2.08.01-89;

t n – расчётная зимняя температура наружного воздуха, °С, равная средней температуре наиболее холодной пятидневки, обеспеченностью 0,92 по СНиП 23-01-99 для г. Ярославль принимается равной -31°С;

n – коэффициент, принимаемый по СНиП II-3-79* (таблица 3*) в зависимости от положения наружной поверхности ограждающей конструкций по отношению к наружному воздуху и принимается равным n=1;

Δ t n – нормативный и температурный перепад между температурой внутреннего воздуха и температурой внутренней поверхности ограждающей конструкции – устанавливается по СНиП II-3-79* (таблица 2*) и принимается равным Δ t n =4,0 °С;

R 0 тр = (22- (-31))*1 / 4,0* 8,7 = 1,52

Определим градусо-сутки отопительного периода по формуле:

ГСОП= (t в – t от.пер)*z от.пер. (2)

где t в - то же, что и в формуле (1);

t от.пер - средняя температура, °С, периода со средней суточной температурой воздуха ниже или равной 8 °С по СНиП 23-01-99;

z от.пер - продолжительность, сут., периода со средней суточной температурой воздуха ниже или равной 8 °С по СНиП 23-01-99;

ГСОП=(22-(-4))*221=5746 °С*сут.

Определим приведенное сопротивление теплопередаче Rо тр по условиям энергосбережения в соответствии с требованиями СНиП II-3-79* (таблица 1б*) и санитарно-гигиенических и комфортных условий. Промежуточные значения определяем интерполяцией.

Таблица 2

Сопротивление теплопередаче ограждающих конструкций (по данным СНиП II-3-79*)

Здания и помещения

Градусо-сутки отпительного периода, ° С*сут

Приведенное сопротивление теплопередаче стен, не менее R 0 тр (м 2 *°С)/Вт

Общественные административные и бытовые, за исключением помещений с влажным или мокрым режимом

5746

3,41

Сопротивление теплопередаче ограждающих конструкций R(0) принимаем как наибольшее из значений вычисленных ранее:

R 0 тр = 1,52< R 0 тр = 3,41, следовательно R 0 тр = 3,41 (м 2 *°С)/Вт = R 0 .

Запишем уравнение для вычисления фактического сопротивления теплопередаче R 0 ограждающей конструкции с использованием формулы в соответствии с заданной расчетной схемой и определим толщину δ x расчётного слоя ограждения из условия:

R 0 = 1/α н + Σδ i/ λ i + δ x/ λ x + 1/α в = R 0

где δ i – толщина отдельных слоёв ограждения кроме расчётного в м;

λ i – коэффициенты теплопроводности отдельных слоев ограждения (кроме расчётного слоя) в (Вт/м*°С) принимаются по СНиП II-3-79* (приложение 3*) – для этого расчёта таблица 1;

δ x – толщина расчётного слоя наружного ограждения в м;

λ x – коэффициент теплопроводности расчётного слоя наружного ограждения в (Вт/м*°С) принимаются по СНиП II-3-79* (приложение 3*) – для этого расчёта таблица 1;

α в - коэффициент теплоотдачи внутренней поверхности ограждающих конструкций принимается по по СНиП II-3-79* (таблица 4*) и принимается равным α в = 8,7 Вт/м 2 *°С.

α н - коэффициент теплоотдачи (для зимних условий) наружной поверхности ограждающей конструкции принимается по по СНиП II-3-79* (таблица 6*) и принимается равным α н = 23 Вт/м 2 *°С.

Термическое сопротивление ограждающей конструкции с последовательно расположенными однородными слоями следует определять как сумму термических сопротивлений отдельных слоев.

Для наружных стен и перекрытий толщина теплоизоляционного слоя ограждения δ x рассчитывается из условия, что величина фактического приведённого сопротивления теплопередаче ограждающей конструкции R 0 должна быть не менее нормируемого значения R 0 тр , вычисленного по формуле (2):

R 0 ≥ R 0 тр

Раскрывая значение R 0 , получим:

R 0 = 1/ 23 + (0,02/ 0,93 + 0,64/ 0,87 + 0,005/ 0,93) + δ x / 0,041 + 1/ 8,7

Исходя из этого, определяем минимальное значение толщины теплоизоляционного слоя

δ x = 0,041*(3,41- 0,115 - 0,022 - 0,74 - 0,005 - 0,043)

δ x = 0,10 м

Принимаем в расчёт толщину утеплителя (пенополистирол) δ x = 0,10 м

Определяем фактическое сопротивление теплопередаче рассчитываемых ограждающих конструкций R 0 , с учётом принятой толщины теплоизоляционного слоя δ x = 0,10 м

R 0 = 1/ 23 + (0,02/ 0,93 + 0,64/ 0,87 + 0,005/ 0,93 + 0,1/ 0,041) + 1/ 8,7

R 0 = 3,43 (м 2 *°С)/Вт

Условие R 0 ≥ R 0 тр соблюдается, R 0 = 3,43 (м 2 *°С)/Вт R 0 тр =3,41 (м 2 *°С)/Вт

В климатических условиях северных географических широт для строителей и архитекторов крайне важен верно сделанный тепловой расчет здания. Полученные показатели дадут для проектирования необходимые сведения, в том числе и об используемых материалах для строительства, дополнительных утеплителях, перекрытиях и даже об отделке.

В целом теплорасчет влияет на несколько процедур:

  • учет проектировщиками при планировании расположения комнат, несущих стен и ограждений;
  • создание проекта отопительной системы и вентиляционных сооружений;
  • подбор стройматериалов;
  • анализ условий эксплуатации постройки.

Все это связано едиными значениями, полученными в результате расчетных операций. В этой статье мы расскажем, как сделать теплотехнический расчет наружной стены здания, а также приведем примеры использования этой технологии.

Задачи проведения процедуры

Ряд целей актуален только для жилых домов или, напротив, промышленных помещений, но большинство решаемых проблем подходит для всех построек:

  • Сохранение комфортных климатических условий внутри комнат. В термин «комфорт» входит как отопительная система, так и естественные условия нагревания поверхности стен, крыши, использование всех источников тепла. Это же понятие включают и систему кондиционирования. Без должной вентиляции, особенно на производстве, помещения будут непригодны для работы.
  • Экономия электроэнергии и других ресурсов на отопление. Здесь имеют место следующие значения:
    • удельная теплоемкость используемых материалов и обшивки;
    • климат снаружи здания;
    • мощность отопления.

Крайне неэкономично проводить отопительную систему, которая просто не будет использоваться в должной степени, но зато будет трудна в установлении и дорога в обслуживании. То же правило можно отнести к дорогостоящим стройматериалам.

Теплотехнический расчет – что это

Теплорасчет позволяет установить оптимальную (две границы – минимальная и максимальная) толщину стен ограждающих и несущих конструкций, которые обеспечат длительную эксплуатацию без промерзаний и перегревов перекрытий и перегородок. Иначе говоря, эта процедура позволяет вычислить реальную или предполагаемую, если она проводится на этапе проектирования, тепловую нагрузку здания, которая будет считаться нормой.

В основу анализа входят следующие данные:

  • конструкция помещения – наличие перегородок, теплоотражающих элементов, высота потолков и пр.;
  • особенности климатического режима в данной местности – максимальные и минимальные границы температур, разница и стремительность температурных перепадов;
  • расположенность строения по сторонам света, то есть учет поглощения солнечного тепла, на какое время суток приходится максимальная восприимчивость тепла от солнца;
  • механические воздействия и физические свойства строительного объекта;
  • показатели влажности воздуха, наличие или отсутствие защиты стен от проникновения влаги, присутствие герметиков, в том числе герметизирующих пропиток;
  • работа естественной или искусственной вентиляции, присутствие «парникового эффекта», паропроницаемость и многое другое.

При этом оценка этих показателей должна соответствовать ряду норм – уровню сопротивления теплопередаче, воздухопроницаемости и пр. Рассмотрим их подробнее.

Требования по теплотехническому расчету помещения и сопутствующая документация

Государственные проверяющие органы, руководящие организацией и регламентацией строительства, а также проверкой выполнения техники безопасности, составили СНиП № 23-02-2003, в котором подробно излагаются нормы проведения мероприятий по тепловой защите зданий.

Документ предлагает инженерные решения, которые обеспечат наиболее экономичный расход теплоэнергии, которая уходит на отопление помещений (жилых или промышленных, муниципальных) в отопительный период. Эти рекомендации и требования были разработаны с учетом вентиляции, конверсии воздуха, а также со вниманием к месторасположению точек поступления тепла.

СНиП – это законопроект на федеральном уровне. Региональная документация представлена в виде ТСН – территориально-строительных норм.

Не все постройки входят в юрисдикцию этих сводов. В частности, не проверяются по этим требованиям те строения, которые отапливаются нерегулярно или вовсе сконструированы без отопления. Обязательным теплорасчет является для следующих зданий:

  • жилые – частные и многоквартирные дома;
  • общественные, муниципальные – офисы, школы, больницы, детские сады и пр.;
  • производственные – заводы, концерны, элеваторы;
  • сельскохозяйственные – любые отапливаемые постройки с/х назначения;
  • складские – амбары, склады.

В тексте документа прописаны нормы для всех тех составляющих, которые входят в теплотехнический анализ.


Требования к конструкциям:

  • Теплоизоляция. Это не только сохранение тепла в холодное время года и недопущение переохлаждений, промерзаний, но и защита от перегрева летом. Изоляция, таким образом, должна быть обоюдосторонней – предупреждение влияний извне и отдачи энергии изнутри.
  • Допустимое значение перепада температур между атмосферой внутри здания и терморежимом внутренней части ограждающих конструкций. Это приведет к скоплению конденсата на стенах, а также к негативному влиянию на здоровье людей, находящихся в помещении.
  • Теплоустойчивость, то есть температурная стабильность, недопущение резких перемен в нагреваемом воздухе.
  • Воздухопроницаемость. Здесь важен баланс. С одной стороны, нельзя допустить остывания постройки из-за активной отдачи тепла, с другой стороны, важно предупредить появление «парникового эффекта». Он бывает, когда использован синтетический, «недышащий» утеплитель.
  • Отсутствие сырости. Повышенная влажность – это не только причина для появления плесени, но и показатель, из-за которого происходят серьезные потери теплоэнергии.

Как делать теплотехнический расчет стен дома – основные параметры

Перед тем как приступить к непосредственному теплорасчету, нужно собрать подробные сведения о постройке. В отчет будут входить ответы на следующие пункты:

  • Назначение здания – жилое это, промышленное или общественное помещение, конкретное предназначение.
  • Географическая широта участка, где находится или будет располагаться объект.
  • Климатические особенности местности.
  • Направление стен по сторонам света.
  • Размеры входных конструкций и оконных рам – их высота, ширина, проницаемость, тип окон – деревянные, пластиковые и пр.
  • Мощность отопительного оборудования, схема расположения труб, батарей.
  • Среднее количество жильцов или посетителей, работников, если это промышленные помещения, которые находятся внутри стен единовременно.
  • Стройматериалы, из которых выполнены полы, перекрытия и любые другие элементы.
  • Наличие или отсутствие подачи горячей воды, тип системы, которая за это отвечает.
  • Особенности вентиляции, как естественной (окна), так и искусственной – вентиляционные шахты, кондиционирование.
  • Конфигурация всего строения – количество этажей, общая и отдельная площадь помещений, расположение комнат.

Когда эти данные будут собраны, инженер может приступать к расчету.

Мы предлагаем вам три метода, которыми чаще всего пользуются специалисты. Также можно использовать комбинированный способ, когда факты берутся из всех трех возможностей.

Варианты теплового расчета ограждающих конструкций

Вот три показателя, которые будут приниматься за главный:

  • площадь постройки изнутри;
  • объем снаружи;
  • специализированные коэффициенты теплопроводности материалов.

Теплорасчет по площади помещений

Не самый экономичный, но наиболее частотный, особенно в России, способ. Он предполагает примитивные вычисления исходя из площадного показателя. При этом не учитывается климат, полоса, минимальные и максимальные температурные значения, влажность и пр.

Также в учет не берут основные источники теплопотерь, такие как:

  • Вентиляционная система – 30-40%.
  • Скаты крыши – 10-25%.
  • Окна и двери – 15-25%.
  • Стены – 20-30%.
  • Пол на грунте – 5-10%.

Эти неточности из-за неучета большинства важных элементов приводят к тому, что сам теплорасчет может иметь сильную погрешность в обе стороны. Обычно инженеры оставляют «запас», поэтому приходится устанавливать такое отопительное оборудование, которое полностью не задействуется или грозит сильному перегреву. Нередки случаи, когда одновременно монтируют отопление и систему кондиционирования, так как не могут правильно рассчитать теплопотери и теплопоступления.

Используют «укрупненные» показатели. Минусы такого подхода:


Q=S*100 Вт (150 Вт)

  • Q – количество тепла, необходимое для комфортного климата во всем здании;
  • Вт S – отапливаемая площадь помещения, м.

Значение 100-150 Ватт является удельным показателем количества тепловой энергии, приходящейся для обогрева 1 м.

Если вы выбираете этот метод, то прислушайтесь к следующим советам:

  • Если высота стен (до потолка) не более трех метров, а количество окон и дверей на одну поверхность 1 или 2, то умножайте полученный результат на 100 Вт. Обычно все жилые дома, как частные, так и многоквартирные, используют это значение.
  • Если в конструкции присутствуют два оконных проема или балкон, лоджия, то показатель возрастает до 120-130 Вт.
  • Для промышленных и складских помещений чаще берется коэффициент в 150 Вт.
  • При выборе отопительных приборов (радиаторов), если они будут расположены возле окна, стоит прибавить их проектируемую мощность на 20-30%.

Теплорасчет ограждающих конструкций по объему здания

Обычно такой способ используется для тех строений, где высокие потолки – более 3 метров. То есть промышленные объекты. Минусом такого способа является то, что не учитывается конверсия воздуха, то есть то, что вверху всегда теплее, чем внизу.

Q=V*41 Вт (34 Вт)

  • V – наружный объем строения в м куб;
  • 41 Вт – удельное количество тепла, необходимое для обогрева одного кубометра здания. Если строительство ведется с применением современных строительных материалов, то показатель равен 34 Вт.
  • Стекла в окнах:
    • двойной пакет – 1;
    • переплет – 1,25.
  • Материалы утеплителя:
    • новые современные разработки – 0,85;
    • стандартная кирпичная кладка в два слоя – 1;
    • малая толщина стен – 1,30.
  • Температура воздуха зимой:
    • -10 – 0,7;
    • -15 – 0,9;
    • -20 – 1,1;
    • -25 – 1,3.
  • Процент окон в сравнении с общей поверхностью:
    • 10% – 0,8;
    • 20% – 0,9;
    • 30% – 1;
    • 40% – 1,1;
    • 50% – 1,2.

Все эти погрешности могут и должны быть учтены, однако, редко используются в реальном строительстве.

Пример теплотехнического расчета наружных ограждающих конструкций здания методом анализа используемого утеплителя

Если вы самостоятельно возводите жилой дом или коттедж, то мы настоятельно рекомендуем продумать все до мелочей, чтобы в итоге сэкономить и сделать оптимальный климат внутри, обеспечить долгую эксплуатацию объекта.

Для этого нужно решить две задачи:

  • сделать правильный теплорасчет;
  • установить систему отопления.

Данные для примера:

  • угловая жилая комната;
  • одно окно – 8,12 м кв;
  • регион – Московская область;
  • толщина стен – 200 мм;
  • площадь по наружным параметрам – 3000*3000.

Необходимо выяснить, какая мощность нужна для обогрева 1 м кв помещения. Результатом будет Qуд = 70 Вт. Если утеплитель (толщина стен) будет меньше, то значения также будут ниже. Сравним:

  • 100 мм – Qуд= 103 Вт.
  • 150 мм – Qуд= 81 Вт.

Этот показатель будет учитываться при прокладке отопления.

Программное обеспечение при проектировании отопительной системы

С помощью компьютерных программ от компании «ЗВСОФТ» можно рассчитать все материалы, затраченные на отопление, а также сделать подробный поэтажный план коммуникаций с отображением радиаторов, удельной теплоемкости, энергозатрат, узлов.

Фирма предлагает базовый САПР для проектных работ любой сложности – . В нем можно не только сконструировать отопительную систему, но и создать подробную схему для строительства всего дома. Это можно реализовать благодаря большому функционалу, числу инструментов, а также работе в двух– и трехмерном пространстве.

К базовому софту можно установить надстройку . Эта программа разработана для проектирования всех инженерных систем, в том числе для отопления. С помощью легкой трассировки линий и функции наслоения планов можно спроектировать на одном чертеже несколько коммуникаций – водоснабжение, электричество и пр.

Перед постройкой дома сделайте теплотехнический расчет. Это поможет вам не ошибиться с выбором оборудования и покупкой стройматериалов и утеплителей.

Если вы собрались построить
небольшой кирпичный коттедж, то у Вас конечно же возникнут вопросы: «Какой
толщины должна быть стена?», «Нужен ли утеплитель?», «С какой стороны класть
утеплитель?» и т.д. и т.п.

В данной статье мы попробуем в
этом разобраться и ответить на все Ваши вопросы.

Теплотехнический расчет
ограждающей конструкции нужен, в первую очередь, для того чтобы узнать, какой
толщины должна быть ваша наружная стена.

Во-первых, нужно решить, сколько
этажей будет в вашем здании и в зависимости от этого производится расчет
ограждающих конструкций по несущей способности (не в этой статье).

По данному расчету мы определяем
количество кирпичей в кладке вашего здания.

Например, получилось 2 глиняного
кирпича без пустот, длина кирпича 250 мм,
толщина раствора 10 мм, итого получается 510 мм (плотность кирпича 0.67
в дальнейшем нам пригодится). Наружную поверхность Вы решили покрыть
облицовочной плиткой, толщина 1 см (при покупке обязательно узнать ее
плотность), а внутреннюю поверхность обыкновенной штукатуркой, толщина слоя 1.5
см, также не забудьте узнать ее плотность. В сумме 535мм.

Для того чтобы здание не
разрушилось этого конечно же хватить, но к сожалению в большинстве городов
России зимы холодные и следовательно такие стены будут промерзать. А чтобы не
стены промерзали, нужен еще слой утеплителя.

Рассчитывается толщина слоя утеплителя
следующим образом:

1. В интернете нужно скачать СНиП
II 3-79* —
«Строительная теплотехника» и СНиП 23-01-99 - «Строительная климатология».

2. Открываем СНиП строительная
климатология и находим свой город в таблице 1*, и смотрим значение на пересечении
столбца «Температура воздуха наиболее холодной пятидневки, °С, обеспечен-ностью
0.98» и строки с вашим городом. Для города Пензы например t н = -32 о С.

3. Расчетная температура внутреннего воздуха
берем

t в = 20 о С.

Коэффициент теплоотдачи для внутренних стен a в = 8,7Вт/м 2 ·˚С

Коэффициент теплоотдачи для наружных стен в зимних условиях a н = 23Вт/м 2 ·˚С

Нормативный температурный перепад между температурой внутреннего
воздуха и температурой внутренней поверхности ограждающих конструкцийΔ t н = 4 о С.

4. Далее
определяем требуемое сопротивление теплопередаче по формуле #G0 (1а) из строительной теплотехники
ГСОП = (t в — t от.пер.) z от.пер , ГСОП=(20+4,5)·207=507,15 (для города
Пензы).

По формуле (1) рассчитываем:

(где сигма это непосредственно толщина
материала, а лямбда плотность. Я взял в качестве утеплителя
пенополиуретановые
панели с плотностью 0.025)

Принимаем толщину утеплителяравной 0,054 м.

Отсюда толщина стены будет:

d = d 1 + d 2 + d 3 + d 4 =

0,01+0,51+0,054+0,015=0,589
м.

Сезон ремонта подошел. Голову сломала: как сделать хороший ремонт за меньшие деньги. Про кредит мыслей нет. Опора только на имеющиеся...

Вместо того чтобы откладывать генеральный ремонт из года в год, можно приготовиться к нему так, чтобы пережить его в меру...

Для начало нужно убрать всё что осталось от старой компании которая там работала. Ломаем искусственную перегородку. После этого сдираем все...

Просмотров