Тепло земли. Земная кора

Температура внутри Земли. Определение температуры в оболочках Земли основывается на различных, часто косвенных данных. Наиболее достоверные температурные данные относятся к самой верхней части земной коры, вскрываемой шахтами и буровыми скважинами до максимальных глубин- 12 км (Кольская скважина).

Нарастание температуры в градусах Цельсия на единицу глубины называют геотермическим градиентом, а глубину в метрах, на протяжении которой температура увеличивается на 1 0 С - геотермической ступенью. Геотермический градиент и соответственно геотермическая ступень изменяются от места к месту в зависимости от геологических условий, эндогенной активности в различных районах, а также неоднородной теплопроводности горных пород. При этом, по данным Б. Гутенберга, пределы колебаний отличаются более чем в 25 раз. Примером тому являются два резко различных градиента: 1) 150 o на 1 км в штате Орегон (США), 2) 6 o на 1 км зарегистрирован в Южной Африке. Соответственно этим геотермическим градиентам изменяется и геотермическая ступень от 6,67 м в первом случае до 167 м - во втором. Наиболее часто встречаемые колебания градиента в пределах 20-50 o , а геотермической ступени -15-45 м. Средний геотермический градиент издавна принимался в 30 o С на 1 км.

По данным В. Н. Жаркова, геотермический градиент близ поверхности Земли оценивается в 20 o С на 1 км. Если исходить из этих двух значений геотермического градиента и его неизменности в глубь Земли, то на глубине 100 км должна была бы быть температура 3000 или 2000 o С. Однако это расходится с фактическими данными. Именно на этих глубинах периодически зарождаются магматические очаги, из которых изливается на поверхность лава, имеющая максимальную температуру 1200-1250 o . Учитывая этот своеобразный "термометр", ряд авторов (В. А. Любимов, В. А. Магницкий) считают, что на глубине 100 км температура не может превышать 1300-1500 o С.

При более высоких температурах породы мантии были бы полностью расплавлены, что противоречит свободному прохождению поперечных сейсмических волн. Таким образом, средний геотермический градиент прослеживается лишь до некоторой относительно небольшой глубины от поверхности (20-30 км), а дальше он должен уменьшаться. Но даже и в этом случае в одном и том же месте изменение температуры с глубиной неравномерно. Это можно видеть на примере изменения температуры с глубиной по Кольской скважине, расположенной в пределах устойчивого кристаллического щита платформы. При заложении этой скважины рассчитывали на геотермический градиент 10 o на 1 км и, следовательно, на проектной глубине (15 км) ожидали температуру порядка 150 o С. Однако такой градиент был только до глубины 3 км, а далее он стал увеличиваться в 1,5-2,0 раза. На глубине 7 км температура была 120 o С, на 10 км -180 o С, на 12 км -220 o С. Предполагается, что на проектной глубине температура будет близка к 280 o С. Вторым примером являются данные по скважине, заложенной в Северном Прикаспии, в районе более активного эндогенного режима. В ней на глубине 500 м температура оказалась равной 42,2 o С, на 1500 м-69,9 o С, на 2000 м-80,4 o С, на 3000 м - 108,3 o С.

Какова же температура в более глубоких зонах мантии и ядра Земли? Более или менее достоверные данные получены о температуре основания слоя В верхней мантии (см. рис. 1.6). По данным В. Н. Жаркова, "детальные исследования фазовой диаграммы Mg 2 SiO 4 - Fe 2 Si0 4 позволили определить реперную температуру на глубине, соответствующей первой зоне фазовых переходов (400 км)" (т.е. перехода оливина в шпинель). Температура здесь в результате указанных исследований около 1600 50 o С.

Вопрос о распределении температур в мантии ниже слоя В и ядре Земли еще не решен, и поэтому высказываются различные представления. Можно только предположить, что температура с глубиной увеличивается при значительном уменьшении геотермического градиента и увеличении геотермической ступени. Предполагают, что температура в ядре Земли находится в пределах 4000-5000 o С.

Средний химический состав Земли. Для суждения о химическом составе Земли привлекаются данные о метеоритах, представляющих собой наиболее вероятные образцы протопланетного материала, из которого сформировались планеты земной группы и астероиды. К настоящему времени хорошо изучено много выпавших на Землю в разные времена и в разных местах метеоритов. По составу выделяют три типа метеоритов: 1)железные, состоящие главным образом из никелистого железа (90-91% Fe), с небольшой примесью фосфора и кобальта; 2) железокаменные (сидеролиты), состоящие из железа и силикатных минералов; 3) каменные, илиаэролиты, состоящие главным образом из железисто-магнезиальных силикатов и включений никелистого железа.

Наибольшее распространение имеют каменные метеориты- около 92,7% всех находок, железокаменные 1,3% и железные 5,6%. Каменные метеориты подразделяют на две группы: а) хондриты с мелкими округлыми зернами - хондрами (90%); б) ахондриты, не содержащие хондр. Состав каменных метеоритов близок к ультраосновным магматическим породам. По данным М. Ботта, в них около 12% железоникелевой фазы.

На основании анализа состава различных метеоритов, а также полученных экспериментальных геохимических и геофизических данных, рядом исследователей дается современная оценка валового элементарного состава Земли, представленная в табл. 1.3.

Как видно из данных таблицы, повышенное распространение относится к четырем важнейшим элементам - О, Fe, Si, Mg, составляющим свыше 91%. В группу менее распространенных элементов входят Ni, S, Ca, A1. Остальные элементы периодической системы Менделеева в глобальных масштабах по общему распространению имеют второстепенное значение. Если сравнить приведенные данные с составом земной коры, то отчетливо видно существенное различие, заключающееся в резком уменьшении О, A1, Si и значительном увеличении Fe, Mg и появлении в заметных количествах S и Ni.

Фигуру Земли называют геоидом. О глубинном строении Земли судят по продольным и поперечным сейсмическим волнам, которые, распространяясь внутри Земли, испытывают преломление, отражение и затухание, что свидетельствует о расслоенности Земли. Выделяют три главные области:

    земная кора;

    мантия: верхняя до глубины 900 км, нижняя до глубины 2900 км;

    ядро Земли внешнее до глубины 5120 км, внутреннее до глубины 6371 км.

Внутреннее тепло Земли связано с распадом радиоактивных элементов - урана, тория, калия, рубидия и др. Средняя, величина теплового потока составляет 1,4-1,5 мккал/см 2. с.

1. Каковы форма и размеры Земли?

2. Какие существуют методы изучения внутреннего строения Земли?

3. Каково внутреннее строение Земли?

4. Какие сейсмические разделы первого порядка четко выделяются при анализе строения Земли?

5. Каким границам соответствуют разделы Мохоровичича и Гутенберга?

6. Какая средняя плотность Земли и как она изменяется на границе мантии и ядра?

7. Как изменяется тепловой поток в различных зонах? Как понимается изменение геотермического градиента и геотермической ступени?

8. По каким данным определяется средний химический состав Земли?

Литература

  • Войткевич Г.В. Основы теории происхождения Земли. М., 1988.

  • Жарков В.Н. Внутреннее строение Земли и планет. М., 1978.

  • Магницкий В.А. Внутреннее строение и физика Земли. М., 1965.

  • Очерки сравнительной планетологии. М., 1981.

  • Рингвуд А.Е. Состав и происхождение Земли. М., 1981.

Материки в свое время были сформированы из массивов земной коры, которая в той или иной степени выступает над уровнем воды в виде суши. Эти глыбы земной коры не один миллион лет раскалывались, сдвигались, части их сминались, чтобы предстать в том виде, которым известен нам сейчас.

Сегодня мы рассмотрим наибольшую и наименьшую мощность земной коры и особенности ее строения.

Немного о нашей планете

В начале формирования нашей планеты здесь действовали множественные вулканы, происходили постоянные столкновения с кометами. Лишь после того, как бомбардировки прекратились, раскаленная поверхность планеты застыла.
То есть ученые уверены, что изначально наша планета представляла собой бесплодную пустыню без воды и растительности. Откуда на ней взялось столько воды - до сих пор остается загадкой. Но не так давно под землей были обнаружены большие запасы воды, возможно, именно они и стали основой наших океанов.

Увы, все гипотезы о происхождении нашей планеты и ее составе являются скорее предположениями, чем фактами. Согласно утверждениям А. Вегенера, изначально Землю покрывал тонкий слой гранита, который в палеозойскую эру преобразовался в праматерик Пангею. В мезозойскую эру Пангея начала раскалываться на части, образовавшиеся материки постепенно отплывали друг от друга. Тихий океан, утверждает Вегенер, - это остаток первичного океана, а Атлантический и Индийский рассматриваются как вторичные.

Земная кора

Состав земной коры практически аналогичен составу планет нашей Солнечной системы - Венеры, Марса и др. Ведь основой для всех планет Солнечной системы послужили одни и те же вещества. А с недавних пор ученые уверены, что столкновение Земли с еще одной планетой, названной Теей, вызвало слияние двух небесных тел, а от отколовшегося осколка образовалась Луна. Это объясняет то, что минеральный состав Луны схож с составом нашей планеты. Ниже мы рассмотрим строение земной коры - карту ее слоев на суше и океане.

Кора составляет всего 1% от массы Земли. Преимущественно она состоит из кремния, железа, алюминия, кислорода, водорода, магния, кальция и натрия и еще 78 элементов. Предполагается, что в сравнении с мантией и ядром кора Земли - оболочка тонкая и хрупкая, состоящая преимущественно из легких веществ. Тяжелые же вещества, как считают геологи, спускаются к центру планеты, а самые тяжелые сосредоточены в ядре.

Строение земной коры и карта его слоев представлены на рисунке ниже.

Материковая земная кора

Кора Земли имеет 3 слоя, каждый из которых неровными пластами покрывает предыдущий. Большая часть ее поверхности - это континентальные и океанические равнины. Континенты также окружает шельф, который после обрывчатого изгиба переходит в континентальный склон (область подводной окраины материка).
Земная материковая кора делится на слои:

1. Осадочный.
2. Гранитный.
3. Базальтовый.

Осадочный слой покрывают осадочные, метаморфические и магматические горные породы. Мощность материковой земной коры составляет наименьший процент.

Типы материковой земной коры

Осадочные горные породы представляют собой скопления, среди которых находятся глина, карбонат, вулканогенные горные породы и другие твердые вещества. Это своеобразный осадок, который сформировался в результате тех или иных природных условий, которые раньше существовали на Земле. Он позволяет исследователям делать выводы по поводу истории нашей планеты.

Гранитный слой состоит из магматических и метаморфических горных пород, схожих с гранитом по своим свойствам. То есть не только гранит составляет второй слой земной коры, но вещества эти по составу очень с ним схожи и имеют примерно аналогичную прочность. Скорость его продольных волн достигает 5,5-6,5 км/с. Состоит он из гранитов, кристаллических сланцев, гнейсов и т. д.

Базальтовый слой слагается из веществ, по составу схожих с базальтами. Является более плотным в сравнении с гранитным слоем. Под базальтовым слоем протекает тягучая мантия из твердых веществ. Условно мантию от коры отделяет так называемая граница Мохоровичича, которая, по сути, разделяет слои различного химического состава. Характеризуется резким нарастанием скорости сейсмических волн.
То есть относительно тонкий слой земной коры является хрупкой преградой, отделяющей нас от раскаленной мантии. Толщина самой мантии составляет в среднем 3 000 км. Вместе с мантией движутся и тектонические плиты, которые, как часть литосферы, являются участком земной коры.

Ниже рассмотрим мощность материковой земной коры. Составляет она до 35 км.

Мощность материковой коры

Толщина земной коры варьируется от 30 до 70 км. И если под равнинами слой ее составляет всего 30-40 км, то под горными системами достигает 70 км. Под Гималаями толщина слоя доходит до 75 км.

Мощность материковой земной коры составляет от 5 до 80 км и напрямую зависит от ее возраста. Так, холодные древние платформы (Восточно-Европейская, Сибирская, Западно-Сибирская) имеют достаточно высокую мощность - 40-45 км.

При этом каждый из слоев имеет свою мощность и толщину, которая в разных областях материка может изменяться.

Мощность материковой земной коры составляет:

1. Осадочный слой - 10-15 км.

2. Гранитный слой - 5-15 км.

3. Базальтовый слой - 10-35 км.

Температура коры Земли

Температура повышается по мере углубления в нее. Считается, что температура ядра составляет до 5 000 С, однако эти цифры остаются условными, так как вид и состав его до сих пор не ясен ученым. По мере углубления в земную кору температура ее повышается каждые 100 м, однако ее цифры варьируются в зависимости от состава элементов и глубины. Океаническая земная кора имеет более высокую температуру.

Океаническая земная кора

Изначально, по предположениям ученых, Земля покрылась именно океаническим слоем коры, который несколько отличается по толщине и составу от материкового слоя. вероятно, возникла из верхнего дифференцированного слоя мантии, то есть по составу она очень близка к ней. Мощность земной коры океанического типа в 5 раз меньше, чем мощность материкового типа. При этом ее состав в глубоких и неглубоких районах морей и океанов друг от друга отличается несущественно.

Слои материковой коры

Мощность океанической земной коры составляют:

1. Слой океанической воды, толщина которого составляет 4 км.

2. Слой неплотных осадков. Мощность составляет 0,7 км.

3. Слой, сложенный из базальтов с карбонатными и кременистыми породами. Средняя мощность - 1,7 км. Он не выделяется резко и характеризуется уплотнением осадочного слоя. Этот вариант его строения называют субокеаническим.

4. Базальтовый слой, не отличающийся от континентальной коры. Мощность океанической земной коры составляет в этом слое 4,2 км.

Базальтовый слой океанической коры в зонах субдукции (зона, в которых один слой коры поглощает другой) превращается в эклогиты. Их плотность настолько высока, что они погружаются вглубь коры на глубину более 600 км, а затем опускаются в нижнюю мантию.

Учитывая, что наименьшая мощность земной коры наблюдается под океанами и составляет всего 5-10 км, ученые давно вынашивают идею начать бурение коры на глубине океанов, что позволило бы более подробно изучить внутреннее строение Земли. Однако слой океанической земной коры очень прочен, а исследования на глубине океана делают эту задачу еще более сложной.

Заключение

Земная кора, пожалуй, единственный слой, подробно изученный человечеством. А вот то, что находится под ней, до сих пор волнует геологов. Остается лишь надеяться, что однажды неизведанные глубины нашей Земли будут изучены.

От мантии внутреннее тепло Земли передается земной коре. Верхний слой земной коры – до глубины 20-30м подвержен влиянию внешних температур, а ниже температура постепенно повышается: на каждые 100м глубины на +3 С. Глубже, температура уже в значительной степени зависит от состава пород.

Задание: Какова температура горных пород в шахте, где добывается каменный уголь, если ее глубина 1000м, а температура слоя земной коры, который уже не зависит от времени года составляет +10 С

Решаем по действиям:

1. Сколько раз произойдет повышение температуры горных пород с глубиной?

1. На сколько градусов повышается температура земной коры в шахте:

3 С 10= 30 С

3. Какой будет температура слоя земной коры в шахте?

10 С+(+30 С)= +40 С

Температура = +10 С +(1000:100 3 С)=10 С +30 С =40 С

Решить задачу : Какова температура земной коры в шахте, если ее глубина 1600м, а температура слоя земной коры, не зависящего от времени года -5 С?

Температура воздуха =(-5 С)+(1600:100 3 С)=(-5 С)+48 С =+43 С.

Запишите условие задачи и решите ее дома:

Какова температура земной коры в шахте, если ее глубина 800м, а температура слоя земной коры, не зависящего от времени года +8?С?

Решите задачи, приведенные в конспекте урока

5. Изучение земной коры. Работа с рис. 24 стр.40, текстом учебника.

Бурение Кольской сверхглубокой скважины началось в 1970году, ее глубина до 12-15км. Подсчитайте, какую часть земного радиуса это составляет.

R Земли = 6378км (экваториальный)

6356 км (полярный) или меридиональный

530-531 часть экваториального.

Глубина самой глубокой в мире шахты в 4 раза меньше. Несмотря на многочисленные исследования, мы еще очень мало знаем о недрах собственной планеты. Словом, если вновь обратиться к приведенному сравнению, мы еще никак не можем “проколоть скорлупку”.

6. Закрепление нового материала. Использование мультимедийной презентации .

Тесты и задания для проверки.

1. Определите оболочку Земли:

1. земная кора.

2. гидросфера.

3. атмосфера

4. биосфера.

А. воздушная

Б. твердая.

Г. водная.

Ключ проверки:

2. Определите, о какой оболочке Земли идет речь:

1. Земная кора

а/ ближе всего к центру Земли

б/ толщина от 5 до 70км

в/ в переводе с латыни “покрывало”

г/ температура вещества +4000 С+5000 С

д/ верхняя оболочка Земли

е/ толщина около 2900км

ж/ состояние вещества особое: твердое и пластичное

з/ состоит из материковой и океанической частей

и/ основной элемент состава – железо.



Ключ проверки:

Землю по ее внутреннему строению иногда сравнивают с куриным яйцом. Что хотят показать этим сравнением?

Домашнее задание: §16, задания и вопросы после параграфа, задача в тетради.

Материал, используемый учителем во время объяснения новой темы.

Земная кора.

Земная кора в масштабе всей Земли представляет тончайшую пленку и по сравнению с радиусом Земли ничтожна. Она достигает максимальной толщины 75км под горными массивами Памира, Тибета, Гималаев. несмотря на маленькую мощность, земная кора имеет сложное строение.

Верхние ее горизонты довольно хорошо изучены при помощи бурения скважин.

Строение и состав земной коры под океанами и на континентах очень сильно различаются. Поэтому и принято выделять два основных типа земной коры – океаническую и континентальную.

Земная кора океанов занимает примерно56% поверхности планеты, и главной ее чертой является небольшая толщина – в среднем около 5-7 км. Но даже такая тонкая земная кора подразделяется на два слоя.

Первый слой – осадочный, представлен глинами, известковыми илами. Второй слой сложен базальтами – продуктами извержений вулканов. Мощность базальтового слоя на дне океанов не превышает 2 км.

Континентальная (материковая) земная кора занимает площадь меньше, чем океаническая, около 44% поверхности планеты. Континентальная кора толще океанической, ее средняя мощность 35-40км, а в области гор достигает 70-75 км. Она состоит из трех слоев.

Верхний слой слагают разнообразные осадки, их мощность в некоторых впадинах, например, в Прикаспийской низменности, составляет 20-22 км. Преобладают отложения мелководий – известняки, глины, пески, соли и гипс. Возраст пород 1,7 млрд.лет.

Второй слой – гранитный – он хорошо изучен геологами, т.к. имеются выходы его на поверхность, а также предпринимались попытки пробурить его, хотя попытки пробурить весь слой гранита оказались неудачными.



Состав третьего слоя не очень ясен. Предполагают, что он должен быть сложен породами типа базальтов. Мощность его составляет 20-25 км. В основании третьего слоя прослеживается поверхность Мохоровичича.

Повехность Мохо.

В 1909г. на Балканском полуострове, около г.Загреба, произошло сильное землетрясение. Хорватсякий геофизик Андрия Мохоровичич,изучая сейсмограмму, записанную в момент этого события, заметил, что на глубине примерно 30 км скорость волн существенно увеличивается. Данное наблюдение подтвердили и другие сейсмологи. Значит, существует некий раздел, ограничивающий снизу земную кору. Для его обозначения ввели особый термин – поверхность Мохоровичича (или раздел Мохо).

Мантия

Под корой на глубинах от 30-50 до 2900 км расположена мантия Земли. Из чего же она состоит? Главным образом из горных пород, богатых магнием и железом.

Мантия занимает до 82% объема планеты и подразделяется на верхнюю и нижнюю. Первая залегает ниже поверхности Мохо до глубины 670 км. Быстрое падение давления в верхней части мантии и высокая температура приводят к плавлению ее вещества.

На глубине от 400 км под материками и 10-150 км под океанами, т.е. в верхней мантии, был обнаружен слой, где сейсмические волны распространяются сравнительно медленно. Этот слой назвали астеносферой (от греч. “астенес” - слабый). Здесь доля расплава составляет 1-3%, более пластичная. Чем остальная мантия, астеносфера служит “смазкой”, по которой перемещаются жесткие литосферные плиты.

По сравнению с породами, слагающими земную кору, породы мантии отличаются большой плотностью и скорость распространения сейсмических волн в них заметно выше.

В самом “подвале” нижней мантии – на глубине 1000км и до поверхности ядра – плотность постепенно увеличивается. Из чего состоит нижняя мантия, пока остается загадкой.

Ядро.

Предполагают, что поверхность ядра состоит из вещества, обладающего свойствами жидкости. Граница ядра находится на глубине 2900км.

А вот внутренняя область, начинающаяся с глубины 5100км, ведет себя как твердое тело. Это обусловлено очень высоким давлением. Даже на верхней границе ядра теоретически рассчитанное давление составляет около 1,3 млн.атм. а в центре достигает 3 млн.атм. Температура здесь может превышать 10000 С. Каждый куб. см вещества земного ядра весит 12 -14 г.

Очевидно, вещество внешнего ядра Земли гладкое, почти как пушечное ядро. Но оказалось, что перепады “границы” достигают 260км.

Лист-конспект урока “Оболочки Земли. Литосфера. Земная кора.”

Тема урока. Строение Земли и свойства земной коры.

1. Внешние оболочки Земли:

Атмосфера - _______________________________________________________________

Гидросфера -_______________________________________________________________

Литосфера - ________________________________________________________________

Биосфера - _________________________________________________________________

2. Литосфера-____________________________________________________________

Кирилл Дегтярев, научный сотрудник, Московский государственный университет им. М. В. Ломоносова.

В нашей стране, богатой углеводородами, геотермальная энергия - некий экзотический ресурс, который при сегодняшнем положении дел вряд ли составит конкуренцию нефти и газу. Тем не менее этот альтернативный вид энергии может использоваться практически всюду и довольно эффективно.

Фото Игоря Константинова.

Изменение температуры грунта с глубиной.

Рост температуры термальных вод и вмещающих их сухих пород с глубиной.

Изменение температуры с глубиной в разных регионах.

Извержение исландского вулкана Эйяфьятлайокудль -иллюстрация бурных вулканических процессов, протекающих в активных тектонических и вулканических зонах с мощным тепловым потоком из земных недр.

Установленные мощности геотермальных электростанций по странам мира, МВт.

Распределение геотермальных ресурсов по территории России. Запасы геотермальной энергии, по оценкам экспертов, в несколько раз превышают запасы энергии органического ископаемого топлива. По данным ассоциации «Геотермальное энергетическое общество».

Геотермальная энергия - это тепло земных недр. Вырабатывается оно в глубинах и поступает к поверхности Земли в разных формах и с различной интенсивностью.

Температура верхних слоёв грунта зависит в основном от внешних (экзогенных) факторов - солнечного освещения и температуры воздуха. Летом и днём грунт до определённых глубин прогревается, а зимой и ночью охлаждается вслед за изменением температуры воздуха и с некоторым запаздыванием, нарастающим с глубиной. Влияние суточных колебаний температуры воздуха заканчивается на глубинах от единиц до нескольких десятков сантиметров. Сезонные колебания захватывают более глубокие пласты грунта - до десятков метров.

На некоторой глубине - от десятков до сотен метров - температура грунта держится постоянной, равной среднегодовой температуре воздуха у поверхности Земли. В этом легко убедиться, спустившись в достаточно глубокую пещеру.

Когда среднегодовая температура воздуха в данной местности ниже нуля, это проявляется как вечная (точнее, многолетняя) мерзлота. В Восточной Сибири мощность, то есть толщина, круглогодично мёрзлых грунтов достигает местами 200-300 м.

С некоторой глубины (своей для каждой точки на карте) действие Солнца и атмосферы ослабевает настолько, что на первое место выходят эндогенные (внутренние) факторы и происходит разогрев земных недр изнутри, так что температура с глубиной начинает расти.

Разогрев глубинных слоёв Земли связывают, главным образом, с распадом находящихся там радиоактивных элементов, хотя называют и другие источники тепла, например физико-химические, тектонические процессы в глубоких слоях земной коры и мантии. Но чем бы это ни было обусловлено, температура горных пород и связанных с ними жидких и газообразных субстанций с глубиной растёт. С этим явлением сталкиваются горняки - в глубоких шахтах всегда жарко. На глубине 1 км тридцатиградусная жара - нормальное явление, а глубже температура ещё выше.

Тепловой поток земных недр, достигающий поверхности Земли, невелик - в среднем его мощность составляет 0,03-0,05 Вт/м 2 ,
или примерно 350 Вт·ч/м 2 в год. На фоне теплового потока от Солнца и нагретого им воздуха это незаметная величина: Солнце даёт каждому квадратному метру земной поверхности около 4000 кВт·ч ежегодно, то есть в 10 000 раз больше (разумеется, это в среднем, при огромном разбросе между полярными и экваториальными широтами и в зависимости от других климатических и погодных факторов).

Незначительность теплового потока из недр к поверхности на большей части планеты связана с низкой теплопроводностью горных пород и особенностями геологического строения. Но есть исключения - места, где тепловой поток велик. Это, прежде всего, зоны тектонических разломов, повышенной сейсмической активности и вулканизма, где энергия земных недр находит выход. Для таких зон характерны термические аномалии литосферы, здесь тепловой поток, достигающий поверхности Земли, может быть в разы и даже на порядки мощнее «обычного». Огромное количество тепла на поверхность в этих зонах выносят извержения вулканов и горячие источники воды.

Именно такие районы наиболее благоприятны для развития геотермальной энергетики. На территории России это, прежде всего, Камчатка, Курильские острова и Кавказ.

В то же время развитие геотермальной энергетики возможно практически везде, поскольку рост температуры с глубиной - явление повсеместное, и задача заключается в «добыче» тепла из недр, подобно тому, как оттуда добывается минеральное сырьё.

В среднем температура с глубиной растёт на 2,5-3 о С на каждые 100 м. Отношение разности температур между двумя точками, лежащими на разной глубине, к разности глубин между ними называют геотермическим градиентом.

Обратная величина - геотермическая ступень, или интервал глубин, на котором температура повышается на 1 о С.

Чем выше градиент и соответственно ниже ступень, тем ближе тепло глубин Земли подходит к поверхности и тем более перспективен данный район для развития геотермальной энергетики.

В разных районах, в зависимости от геологического строения и других региональных и местных условий, скорость роста температуры с глубиной может резко различаться. В масштабах Земли колебания величин геотермических градиентов и ступеней достигают 25 крат. Например, в штате Орегон (США) градиент составляет 150 о С на 1 км, а в Южной Африке - 6 о С на 1 км.

Вопрос, какова температура на больших глубинах - 5, 10 км и более? При сохранении тенденции температура на глубине 10 км должна составлять в среднем примерно 250-300 о С. Это более или менее подтверждается прямыми наблюдениями в сверхглубоких скважинах, хотя картина существенно сложнее линейного повышения температуры.

Например, в Кольской сверхглубокой скважине, пробурённой в Балтийском кристаллическом щите, температура до глубины 3 км меняется со скоростью 10 о С/1 км, а далее геотермический градиент становится в 2-2,5 раза больше. На глубине 7 км зафиксирована уже температура 120 о С, на 10 км - 180 o С, а на 12 км - 220 o С.

Другой пример - скважина, заложенная в Северном Прикаспии, где на глубине 500 м зарегистрирована температура 42 o С, на 1,5 км - 70 o С, на 2 км - 80 o С, на 3 км - 108 o С.

Предполагается, что геотермический градиент уменьшается начиная с глубины 20-30 км: на глубине 100 км предположительные температуры около 1300-1500 o С, на глубине 400 км - 1600 o С, в ядре Земли (глубины более 6000 км) - 4000-5000 o С.

На глубинах до 10-12 км температуру измеряют через пробурённые скважины; там же, где их нет, её определяют по косвенным признакам так же, как и на бóльших глубинах. Такими косвенными признаками могут быть характер прохождения сей-смических волн или температура изливающейся лавы.

Впрочем, для целей геотермальной энергетики данные о температурах на глубинах более 10 км пока не представляют практического интереса.

На глубинах в несколько километров много тепла, но как его поднять? Иногда эту задачу решает за нас сама природа с помощью естественного теплоносителя - нагретых термальных вод, выходящих на поверхность или же залегающих на доступной для нас глубине. В ряде случаев вода в глубинах разогрета до состояния пара.

Строгого определения понятия «термальные воды» нет. Как правило, под ними подразумевают горячие подземные воды в жидком состоянии или в виде пара, в том числе выходящие на поверхность Земли с температурой выше 20 о С, то есть, как правило, более высокой, чем температура воздуха.

Тепло подземных вод, пара, пароводяных смесей - это гидротермальная энергия. Соответственно энергетика, основанная на её использовании, называется гидротермальной.

Сложнее обстоит дело с добычей тепла непосредственно сухих горных пород - петротермальной энергии, тем более что достаточно высокие температуры, как правило, начинаются с глубин в несколько километров.

На территории России потенциал петротермальной энергии в сто раз выше, чем у гидротермальной, - соответственно 3500 и 35 трлн тонн условного топлива. Это вполне естественно - тепло глубин Земли имеется везде, а термальные воды обнаруживаются локально. Однако из-за очевидных технических трудностей для получения тепла и электроэнергии в настоящее время используются большей частью термальные воды.

Воды температурой от 20-30 до 100 о С пригодны для отопления, температурой от 150 о С и выше - и для выработки электроэнергии на геотермальных электростанциях.

В целом же геотермальные ресурсы на территории России в пересчёте на тонны условного топлива или любую другую единицу измерения энергии примерно в 10 раз выше запасов органического топлива.

Теоретически только за счёт геотермальной энергии можно было бы полностью удовлетворить энергетические потребности страны. Практически же на данный момент на большей части её территории это неосуществимо по технико-экономическим соображениям.

В мире использование геотермальной энергии ассоциируется чаще всего с Исландией - страной, расположенной на северном окончании Срединно-Атлантического хребта, в исключительно активной тектонической и вулканической зоне. Наверное, все помнят мощное извержение вулкана Эйяфьятлайокудль (Eyjafjallajökull) в 2010 году.

Именно благодаря такой геологической специфике Исландия обладает огромными запасами геотермальной энергии, в том числе горячих источников, выходящих на поверхность Земли и даже фонтанирующих в виде гейзеров.

В Исландии в настоящее время более 60% всей потребляемой энергии берут из Земли. В том числе за счёт геотермальных источников обеспечивается 90% отопления и 30% выработки электроэнергии. Добавим, что остальная часть электроэнергии в стране производится на ГЭС, то есть также с использованием возобновляемого источника энергии, благодаря чему Исландия выглядит неким мировым экологическим эталоном.

«Приручение» геотермальной энергии в XX веке заметно помогло Исландии в экономическом отношении. До середины прошлого столетия она была очень бедной страной, сейчас занимает первое место в мире по установленной мощности и производству геотермальной энергии на душу населения и находится в первой десятке по абсолютной величине установленной мощности геотермальных электростанций. Однако её население составляет всего 300 тысяч человек, что упрощает задачу перехода на экологически чистые источники энергии: потребности в ней в целом невелики.

Помимо Исландии высокая доля геотермальной энергетики в общем балансе производства электроэнергии обеспечивается в Новой Зеландии и островных государствах Юго-Восточной Азии (Филиппины и Индонезия), странах Центральной Америки и Восточной Африки, территория которых также характеризуется высокой сейсмической и вулканической активностью. Для этих стран при их нынешнем уровне развития и потребностях геотермальная энергетика вносит весомый вклад в социально-экономическое развитие.

(Окончание следует.)

Земля расположена достаточно близко к Солнцу, чтобы получаемой энергии хватало на поддержание тепла и существования воды в жидком виде. В основном благодаря этому наша планета пригодна для жизни.

Как мы помним из уроков географии, Земля состоит из различных слоев. Чем дальше к центру планеты, тем обстановка все больше накаляется. К счастью для нас, на коре, самом верхнем геологическом слое, температура относительно стабильная и комфортная. Однако ее значения могут сильно меняться в зависимости от места и времени.

Johan Swanepoel | shutterstock.com

Структура Земли

Как и другие планеты земной группы, наша планета состоит из силикатных пород и металлов, которые дифференцируются между твердым металлическим ядром, расплавленным внешним ядром, силикатной мантией и корой. Внутреннее ядро имеет примерный радиус 1220 км, а внешнее — около 3400 км.

Затем следуют мантия и земная кора. Толщина мантии составляет 2890 км. Это самый толстый слой Земли. Она состоит из силикатных пород, богатых железом и магнием. Высокие температуры внутри мантии делают твердый силикатный материал достаточно пластичным.

Верхний слой мантии разделен на литосферу и астеносферу. Первая состоит из коры и холодной жесткой верхней части мантии, в то время как астеносфера обладает некоторой пластичностью, из-за чего покрывающая ее литосфера неустойчива и подвижна.

Земная кора

Кора является внешней оболочкой Земли и составляет лишь 1 % от ее общей массы. Толщина коры меняется в зависимости от места. На континентах она может достигать 30 км, а под океанами — всего 5 км.

Оболочка состоит из множества магматических, метаморфических и осадочных пород и представлена системой тектонических плит. Эти плиты плавают над мантией Земли, и, предположительно, конвекция в мантии приводит к тому, что они находятся в постоянном движении.

Иногда тектонические плиты сталкиваются, расходятся или скользят друг о друга. Все три типа тектонической активности лежат в основе формирования земной коры и приводят к периодическому обновлению ее поверхности в течение миллионов лет.

Диапазон температуры

На внешнем слое коры, где она соприкасается с атмосферой, ее температура совпадает с температурой воздуха. Таким образом, она может нагреваться до 35 °C в пустыне и быть ниже нуля в Антарктиде. В среднем температура поверхности коры составляет около 14 °C.

Как видно, диапазон значений довольно широк. Но стоит учесть тот факт, что большая часть земной коры лежит под океанами. Вдали от солнца, где она встречается с водой, температура может составлять лишь 0...+3 °C.

Если же начать копать яму в континентальной коре, то температура будет заметно возрастать. Например, внизу самой глубокой в мире шахты «Тау-Тона» (3,9 км) в Южной Африке она достигает 55 °C. Шахтерам, работающим там весь день, не обойтись без кондиционера.

Таким образом, средняя температура поверхности может варьироваться от изнуряющей знойной до люто морозной в зависимости от местоположения (на суше или под водой), времен года и времени суток.

И все же земная кора остается единственным местом в Солнечной системе, где температура достаточно стабильна, чтобы жизнь на ней продолжала процветать. Добавьте к этому нашу жизнеспособную атмосферу и защитную магнитосферу, и вы поймете, что нам действительно крупно повезло!

Просмотров