Скорость звука в воде.

Звук распространяется посредством звуковых волн. Эти волны проходят не только сквозь газы и жидкости, но и через твердые тела. Действие любых волн заключается главным образом в переносе энергии. В случае звука перенос принимает форму мельчайших перемещений на молекулярном уровне.

В газах и жидкостях звуковая волна сдвигает молекулы в направлении своего движения, то есть в направлении длины волны. В твердых телах звуковые колебания молекул могут происходить и в направлении перпендикулярном волне.

Звуковые волны распространяются из своих источников во всех направлениях, как это показано на рисунке справа, на котором изображен металлический колокол, периодически сталкивающийся со своим языком. Эти механические столкновения заставляют колокол вибрировать. Энергия вибраций сообщается молекулам окружающего воздуха, и они оттесняются от колокола. В результате в прилегающем к колоколу слое воздуха увеличивается давление, которое затем волнообразно распространяется во все стороны от источника.

Скорость звука не зависит от громкости или тона. Все звуки от радиоприемника в комнате, будь они громкими или тихими, высокого тона или низкого, достигают слушателя одновременно.

Скорость звука зависит от вида среды, в которой он распространяется, и от ее температуры. В газах звуковые волны распространяются медленно, потому что их разреженная молекулярная структура слабо препятствует сжатию. В жидкостях скорость звука увеличивается, а в твердых телах становится еще более высокой, как это показано на диаграмме внизу в метрах в секунду (м/с).

Путь волны

Звуковые волны распространяются в воздухе аналогично показанному на диаграммах справа. Волновые фронты движутся от источника на определенном расстоянии друг от друга, определяемом частотой колебаний колокола. Частота звуковой волны определяется путем подсчета числа волновых фронтов, прошедших через данную точку в единицу времени.

Фронт звуковой волны удаляется от вибрирующего колокола.

В равномерно прогретом воздухе звук распространяется с постоянной скоростью.

Второй фронт следует за первым на расстоянии, равном длине волны.

Сила звука максимальна вблизи источника.

Графическое изображение невидимой волны

Звуковое зондирование глубин

Пучок лучей гидролокатора, состоящий из звуковых волн, легко проходит через океанскую воду. Принцип действия гидролокатора основан на том факте, что звуковые волны отражаются от океанского дна; этот прибор обычно используется для определения особенностей подводного рельефа.

Упругие твердые тела

Звук распространяется в деревянной пластине. Молекулы большинства твердых тел связаны в упругую пространственную решетку, которая плохо сжимается и вместе с тем ускоряет прохождение звуковых волн.

>>Физика: Звук в различных средах

Для распространения звука необходима упругая среда. В вакууме звуковые волны распространяться не могут, так как там нечему колебаться. В этом можно убедиться на простом опыте. Если поместить под стеклянный колокол электрический звонок, то по мере выкачивания из-под колокола воздуха мы обнаружим, что звук от звонка будет становиться все слабее и слабее, пока не прекратится совсем.

Звук в газах . Известно, что во время грозы мы сначала видим вспышку молнии и лишь через некоторое время слышим раскаты грома (рис. 52). Это запаздывание возникает из-за того, что скорость звука в воздухе значительно меньше скорости света, идущего от молнии.

Скорость звука в воздухе впервые была измерена в 1636 г. французским ученым М. Мерсенном. При температуре 20 °С она равна 343 м/с, т.е. 1235 км/ч. Заметим, что именно до такого значения уменьшается на расстоянии 800 м скорость пули, вылетевшей из пулемета Калашникова (ПК). Начальная скорость пули 825 м/с, что значительно превышает скорость звука в воздухе. Поэтому человек, услышавший звук выстрела или свист пули, может не беспокоиться: эта пуля его уже миновала. Пуля обгоняет звук выстрела и достигает своей жертвы до того, как приходит этот звук.

Скорость звука зависит от температуры среды: с увеличением температуры воздуха она возрастает, а с уменьшением - убывает. При 0 °С скорость звука в воздухе составляет 331 м/с.

В разных газах звук распространяется с разной скоростью. Чем больше масса молекул газа, тем меньше скорость звука в нем. Так, при температуре 0 °С скорость звука в водороде 1284 м/с, в гелии - 965 м/с, а в кислороде - 316 м/с.

Звук в жидкостях . Скорость звука в жидкостях, как правило, больше скорости звука в газах. Скорость звука в воде впервые была измерена в 1826 г. Ж- Колладоном и Я. Штурмом. Свои опыты они проводили на Женевском озере в Швейцарии (рис. 53). На одной лодке поджигали порох и одновременно ударяли в колокол, опущенный в воду. Звук этого колокола с помощью специального рупора, также опущенного в воду, улавливался на другой лодке, которая находилась на расстоянии 14 км от первой. По интервалу времени между вспышкой света и приходом звукового сигнала определили скорость звука в воде. При температуре 8 °С она оказалась равной примерно 1440 м/с.


На границе между двумя разными средами часть звуковой волны отражается, а часть проходит дальше. При переходе звука из воздуха в воду 99,9 % звуковой энергии отражается назад, однако давление в прошедшей в воду звуковой волне оказывается почти в 2 раза больше. Слуховой аппарат рыб реагирует именно на это. Поэтому, например, крики и шумы над поверхностью воды являются верным способом распугать морских обитателей. Человека же, оказавшегося под водой, эти крики не оглушат: при погружении в воду в его ушах останутся воздушные "пробки", которые и спасут его от звуковой перегрузки.

При переходе звука из воды в воздух снова отражается 99,9 % энергии. Но если при переходе из воздуха в воду звуковое давление увеличивалось, то теперь оно, наоборот, резко уменьшается. Именно по этой причине, например, не доходит до человека в воздухе звук, возникающий под водой при ударе одним камнем о другой.

Такое поведение звука на границе между водой и воздухом дало основание нашим предкам считать подводный мир "миром молчания". Отсюда же и выражение: "Нем как рыба". Однако еще Леонардо да Винчи предлагал слушать подводные звуки, приложив ухо к веслу, опущенному в воду. Воспользовавшись таким способом, можно убедиться, что рыбы на самом деле довольно болтливы.

Звук в твердых телах . Скорость звука в твердых телах больше, чем в жидкостях и газах. Если вы приложите ухо к рельсу, то после удара по другому концу рельса вы услышите два звука. Один из них достигнет вашего уха по рельсу, другой - по воздуху.

Хорошей проводимостью звука обладает земля. Поэтому в старые времена при осаде в крепостных стенах помещали "слухачей", которые по звуку, передаваемому землей, могли определить, ведет ли враг подкоп к стенам или нет. Прикладывая ухо к земле, также следили за приближением вражеской конницы.

Твердые тела хорошо проводят звук. Благодаря этому люди, потерявшие слух, иной раз способны танцевать под музыку, которая доходит до их слуховых нервов не через воздух и наружное ухо, а через пол и кости.

1. Почему во время грозы мы сначала видим молнию и лишь потом слышим гром? 2. От чего зависит скорость звука в газах? 3. Почему человек, стоящий на берегу реки, не слышит звуков, возникающих под водой? 4. Почему "слухачами", которые в древние времена следили за земляными работами противника, часто были слепые люди?

Экспериментальное задание . Положив на один конец доски (или длинной деревянной линейки) наручные часы, приложите ухо к другому ее концу. Что вы слышите? Объясните явление.

С.В. Громов, Н.А. Родина, Физика 8 класс

Отослано читателями из интернет-сайтов

Планирование физики, планы конспектов уроков физики, школьная программа, учебники и книги по физике 8 класс, курсы и задание по физике для 8 класса

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

На большие расстояния звуковая энергия распространяется только вдоль пологих лучей, которые на всем пути не касаются дна океана. В этом случае ограничением, накладываемым средой на дальность распространения звука, является поглощение его в морской воде. Основной механизм поглощения связан с релаксационными процессами, сопровождающими нарушение акустической волной термодинамического равновесия между ионами и молекулами растворенных в воде солей. Следует отметить, что главная роль в поглощении в широком диапазоне звуковых частот принадлежит серномагниевой соли MgSO4, хотя в процентном отношении ее содержание в морской воде совсем невелико - почти в 10 раз меньше, чем, например, каменной соли NаС1, которая тем не менее не играет сколько-нибудь заметной роли в поглощении звука.

Поглощение в морской воде, вообще говоря, тем больше, чем выше частота звука. На частотах от 3-5 до по крайней мере 100 кГц, где доминирует указанный выше механизм, поглощение пропорционально частоте в степени примерно 3/2. На более низких частотах включается новый механизм поглощения (возможно, он связан с наличием в воде солей бора), который становится особенно заметным в диапазоне сотен герц; здесь уровень поглощения аномально высок и существенно медленнее падает с уменьшением частоты.

Чтобы более наглядно представить себе количественные характеристики поглощения в морской воде, заметим, что за счет этого эффекта звук с частотой 100 Гц ослабляется в 10 раз на пути в 10 тыс. км, а с частотой 10 кГц - на расстоянии только в 10 км (рисунок 2). Таким образом, только низкочастотные звуковые волны могут быть использованы для дальней подводной связи, для дальнего обнаружения подводных препятствий и т.п .

Рисунок 2 – Расстояния, на которых звуки разных частот затухают в 10 раз при распространении в морской воде.

В области слышимых звуков для диапазона частот 20-2000 Гц дальность распространения под водой звуков средней интенсивности достигает 15-20 км, а в области ультразвука – 3-5 км.

Если исходить из величин затухания звука, наблюдаемых в лабораторных условиях в малых объёмах воды, то можно было бы ожидать значительно больших дальностей. Однако в естественных условиях, кроме затухания, обусловленного свойствами самой воды (т. н. вязкого затухания), сказываются ещё его рассеяние и поглощение различными неоднородностями среды.

Рефракция звука, или искривление пути звукового луча, вызывается неоднородностью свойств воды, главным образом по вертикали, вследствие трёх основных причин: изменения гидростатического давления с глубиной, изменения солёности и изменения температуры вследствие неодинакового прогрева массы воды солнечными лучами. В результате совокупного действия этих причин скорость распространения звука, составляющая около 1450 м/сек для пресной воды и около 1500 м/сек для морской, изменяется с глубиной, причём закон изменения зависит от времени года, времени дня, глубины водоёма и ряда др. причин. Звуковые лучи, вышедшие из источника под некоторым углом к горизонту, изгибаются, причём направление изгиба зависит от распределения скоростей звука в среде. Летом, когда верхние слои теплее нижних, лучи изгибаются книзу и в большинстве своём отражаются от дна, теряя при этом значительную долю своей энергии. Наоборот, зимой, когда нижние слои воды сохраняют свою температуру, между тем как верхние слои охлаждаются, лучи изгибаются кверху и претерпевают многократные отражения от поверхности воды, при которых теряется значительно меньше энергии. Поэтому зимой дальность распространения звука больше, чем летом. Вследствие рефракции образуются т. н. мёртвые зоны, т. е. области, расположенные недалеко от источника, в которых слышимость отсутствует.

Наличие рефракции, однако, может приводить к увеличению дальности распространения звука - явлению сверхдальнего распространения звуков под водой. На некоторой глубине под поверхностью воды находится слой, в котором звук распространяется с наименьшей скоростью; выше этой глубины скорость звука увеличивается из-за повышения температуры, а ниже - вследствие увеличения гидростатического давления с глубиной. Этот слой представляет собой своеобразный подводный звуковой канал. Луч, отклонившийся от оси канала вверх или вниз, вследствие рефракции всегда стремится попасть в него обратно. Если поместить источник и приёмник звука в этом слое, то даже звуки средней интенсивности (например, взрывы небольших зарядов в 1-2 кг) могут быть зарегистрированы на расстояниях в сотни и тысячи км. Существенное увеличение дальности распространения звука при наличии подводного звукового канала может наблюдаться при расположении источника и приёмника звука не обязательно вблизи оси канала, а, например, у поверхности. В этом случае лучи, рефрагируя книзу, заходят в глубоководные слои, где они отклоняются кверху и выходят снова к поверхности на расстоянии в несколько десятков км от источника. Далее картина распространения лучей повторяется и в результате образуется последовательность т. н. вторичных освещенных зон, которые обычно прослеживаются до расстояний в несколько сотен км.

На распространение звуков высокой частоты, в частности ультразвуков, когда длины волн очень малы, оказывают влияние мелкие неоднородности, обычно имеющиеся в естественных водоёмах: микроорганизмы, пузырьки газов и т.д. Эти неоднородности действуют двояким образом: они поглощают и рассеивают энергию звуковых волн. В результате с повышением частоты звуковых колебаний дальность их распространения сокращается. Особенно сильно этот эффект заметен в поверхностном слое воды, где больше всего неоднородностей. Рассеяние звука неоднородностями, а также неровностями поверхности воды и дна вызывает явление подводной реверберации, сопровождающей посылку звукового импульса: звуковые волны, отражаясь от совокупности неоднородностей и сливаясь, дают затягивание звукового импульса, продолжающееся после его окончания, подобно реверберации, наблюдающейся в закрытых помещениях. Подводная реверберация - довольно значительная помеха для ряда практических применений гидроакустики, в частности для гидролокации.

Пределы дальности распространения подводных звуков лимитируются ещё и т.н. собственными шумами моря, имеющими двоякое происхождение. Часть шумов возникает от ударов волн на поверхности воды, от морского прибоя, от шума перекатываемой гальки и т.п. Другая часть связана с морской фауной; сюда относятся звуки, производимые рыбами и др. морскими животными .

Под звуком понимают упругие волны, лежащие в пределах слышимости человеческого уха, в интервале колебаний от 16 гц до 20 кгц. Колебания с частотой ниже 16 гц называются инфра­звуком, свыше 20 кгц -ультразвуком.

Вода по сравнению с воздухом обладает большей плотностью и меньшей сжимаемостью. В связи с этим скорость звука в воде в четыре с половиной раза больше, чем в воздухе, и составляет 1440 м/сек. Частота колебаний звука (ню) связана с длиной вол­ны (лямбда) соотношением: c = лямбда-ню. Звук распространяется в воде без дисперсии. Скорость звука в воде изменяется в зависимости от двух параметров: плотности и температуры. Изменение темпера­туры на 1° влечет за собой соответственное изменение скорости звука на 3,58 м в секунду. Если проследить за скоростью рас­пространения звука от поверхности до дна, окажется, что сна­чала из-за понижения температуры она быстро убывает, достиг­нув на некоторой глубине минимума, а затем, с глубиной, начи­нает быстро возрастать за счет увеличения давления воды, которое, как известно, возрастает приблизительно на 1 атм на каждые 10 м глубины.

Начиная с глубины приблизительно 1200 м , где температура воды практически остается постоянной, изменение скорости зву­ка происходит за счет изменения давления. «На глубине, равной приблизительно 1200 м (для Атлантики), имеется минимум значения скорости звука; на больших глубинах благодаря уве­личению давления скорость звука опять увеличивается. Так как звуковые лучи всегда изгибаются к участкам среды, где их скорость наименьшая, то они концентрируются в слое с мини­мальной скоростью звука» (Красильников, 1954). Этот слой, открытый советскими физиками Л. Д. Розенбергом и Л.М. Бре­ховских, носит название «подводного звукового канала». Звук, попавший в звуковой канал, может распространяться без ослабления на огромные расстояния. Эту особенность необходи­мо иметь в виду при рассмотрении акустической сигнализации глубоководных рыб.

Поглощение звука в воде в 1000 раз меньше, чем в воздухе. Источник звука в воздухе мощностью в 100 квт в воде слы­шен на расстоянии до 15 км ; в воде источник звука в 1 квт слышен на расстоянии 30-40 км. Звуки различных частот по­глощаются неодинаково: сильнее всего поглощаются звуки высо­ких частот и мгнее всего - низкие звуки. Малое поглощение звука в воде позволило использовать его для гидролокации и сигнализации. Водные пространства наполнены большим коли­чеством различных звуков. Звуки водоемов Мирового океана, как показал американский гидроакустик Венц (Wenz, 1962), возникают в связи со следующими факторами: приливами и от­ливами, течениями, ветром, землетрясениями и цунами, инду­стриальной деятельностью человека и биологической жизнью. Характер шумов, создаваемых различными факторами, отли­чается как набором звуковых частот, так и их интенсивностью. На рис. 2 показана зависимость спектра и уровня давления зву­ков Мирового океана от вызывающих их факторов.

В различных участках Мирового океана состав шумов опре­деляют различные компоненты. Большое влияние при этом на состав звуков оказывают дно и берега.

Таким образом, состав и интенсивность шумов в различных участках Мирового океана исключительно разнообразны. Суще­ствуют эмпирические формулы, показывающие зависимость ин­тенсивности шумов моря от интенсивности вызывающих их факторов. Однако в практических целях шумы океана измеря­ются обычно эмпирически.

Следует отметить, что среди звуков Мирового океана наи­большей интенсивностью отличаются индустриальные звуки, со­здаваемые человеком: шум кораблей, тралов и т. д. По данным Шейна (1964), они по интенсивности в 10-100 раз превышают иные звуки Мирового океана. Однако, как видно из рис. 2, их спектральный состав несколько отличается от спектрального состава звуков, вызываемых другими факторами.

При распространении в воде звуковые волны могут отра­жаться, преломляться, поглощаться, испытывать диффракцию и интерференцию.

Встречая на своем пути препятствие, звуковые волны могут отразиться от него в случае, когда длина их волны (лямбда) меньше размера препятствия, или обогнуть (диффрагировать) его в слу­чае, когда их длина волны больше препятствия. В этом случае можно слышать то, что происходит за препятствием, не видя источника непосредственно. Падая на препятствие, звуковые волны в одном случае могут отразиться, в другом - проникнуть в него (поглотиться им). Величина энергии отраженной волны зависит от того, как сильно разнятся между собой так называ­емые акустические сопротивления сред «р1с1» и «р2с2», на гра­ницу раздела которых падают звуковые волны. Под акустиче­ским сопротивлением среды подразумевается произведение плотности данной среды р на скорость распространения звука с в ней. Чем больше разница акустических сопротивлений сред, тем большая часть энергии отразится от раздела двух сред, и наоборот. В случае, например, падения звука из воздуха, рс ко­торого 41, в воду, рс которой 150 000, он отражается согласно формуле:

В связи с указанным звук гораздо лучше проникает в твер­дое тело из воды, чем из воздуха. Из воздуха в воду звук хоро­шо проникает через кусты или камыши, выступающие над водной поверхностью.

В связи с отражением звука от препятствий и его волновой природой может происходить сложение или вычитание амплитуд звуковых давлений одинаковых частот, пришедших в данную точку пространства. Важным следствием такого сложения (ин­терференции) является образование стоячих волн при отраже­нии. Если, например, привести в колебание камертон, прибли­жая и удаляя его от стены, можно слышать из-за появления пуч­ностей и узлов в звуковом поле усиление и ослабление громко­сти звука. Обычно стоячие волны образуются в закрытых емко­стях: в аквариумах, бассейнах и пр. при относительно длительном по времени звучании источника.

В реальных условиях моря или другого естественного водо­ема при распространении звука наблюдаются многочисленные сложные явления, возникающие в связи с неоднородностью водной среды. Огромное влияние на распространение звука в естественных водоемах оказывают дно и границы раздела (вода - воздух), температурная и солевая неоднородность, гид­ростатическое давление, пузырьки воздуха и планктонные орга­низмы. Поверхности раздела вода - воздух и дно, а также не­однородность воды приводят к явлениям рефракции (искрив­ление звуковых лучей), или реверберации (многократное отра­жение звуковых лучей).

Пузырьки воды, планктон и другие взвеси способствуют по­глощению звука в воде. Количественная оценка этих многочис­ленных факторов в настоящее время еще не разработана. Учи­тывать же их при постановке акустических опытов необходимо.

Рассмотрим теперь явления, происходящие в воде при излу­чении в ней звука.

Представим себе звуковой источник как пульсирующую сфе­ру в бесконечном пространстве. Акустическая энергия, излучае­мая таким источником, ослабляется обратно пропорционально квадрату расстояния от его центра.

Энергия образующихся звуковых волн может быть охарак­теризована тремя параметрами: скоростью, давлением и смеще­нием колеблющихся частиц воды. Два последних параметра представляют особый интерес при рассмотрении слуховых спо­собностей рыб, поэтому на них остановимся более подробно.

По Гаррису и Бергельджику (Harris a. Berglijk, 1962), рас­пространение волн давления и эффекта смещения по-разному представлены в ближнем (на расстоянии менее одной длины волны звука) и дальнем (на расстоянии, более одной длины вол­ны звука) акустическом поле.

В дальнем акустическом поле давление ослабляется обратно пропорционально расстоянию от источника звука. При этом в дальнем акустическом поле амплитуды смещения прямо пропор­циональны амплитудам давления и связаны между собой фор­мулой:

где Р - акустическое давление в дин/см 2 ;

d - величина смещения частиц в см.

В ближнем акустическом поле зависимость между амплиту­дами давления и смещения иная:

где Р -акустическое давление в дин/см 2 ;

d - величины смещения частиц воды в см;

f - частота колебаний в гц;

рс - акустическое сопротивление воды, равное 150 000 г/см 2 сек 2 ;

лямбда - длина волны звука в м ; r - расстояние от центра пульсирующей сферы;

i = SQR i

Из формулы видно, что амплитуда смещения в ближнем аку­стическом поле зависит от длины волны, звука и расстояния от источника звука.

На расстояниях, меньших, чем длина волны рассматриваемо­го звука, амплитуда смещения убывает обратно пропорциональ­но квадрату расстояния:

где А - радиус пульсирующей сферы;

Д - увеличение радиуса сферы за счет пульсации; r - расстояние от центра сферы.

Рыбы, как будет показано ниже, обладают двумя разными типами приемников. Одни из них воспринимают давление, а другие - смещение частиц воды. Приведенные уравненияимеют поэтому большое значение для правильной оценки ответных реакций рыб на подводные источники звука.

В связи с излучением звука отметим еще два явления, свя­занные с излучателями: явление резонанса и направленности излучателей.

Излучение звука телом происходит в связи с его колебания­ми. Каждое тело имеет собственную частоту колебаний, опреде­ляемую размером тела и его упругими свойствами. Если такое тело приводится в колебание, частота которого совпадает с его собственной частотой, наступает явление значительного увели­чения амплитуды колебания - резонанс. Применение понятия о резонансе позволяет охарактеризовать некоторые акустические свойства излучателей и приемников рыб. Излучение звука в воду может быть направленным и ненаправленным. В первом случае звуковая энергия распространяется преимущественно в определенном направлении. График, выражающий простран­ственное распределение звуковой энергии данного источника звука, называют диаграммой его направленности. Направлен­ность излучения наблюдается в случае, когда диаметр излучате­ля значительно больше длины волны излучаемого звука.

В случае ненаправленного излучения звуковая энергия рас­ходится во все стороны равномерно. Такое явление происходит в случае, когда длина волны излучаемого звука превосходит диаметр излучателя лямбда>2А. Второй случай наиболее характерен для подводных излучателей низкой частоты. Обычно длины волн низкочастотных звуков бывают значительно больше размеров применяемых подводных излучателей. Такое же явление харак­терно и для излучателей рыб. В этих случаях диаграммы на­правленности у излучателей отсутствуют. В настоящей главе были отмечены лишь некоторые общие физические свойства зву­ка в водной среде в связи с биоакустикой рыб. Некоторые более частные вопросы акустики будут рассмотрены в соответствую­щих разделах книги.

В заключение рассмотрим применяемые различными автора­ми системы измерений звука. Звук может быть выражен его ин­тенсивностью, давлением или уровнем давления.

Интенсивность звука в абсолютных единицах измеряется или числом эрг/сек-см 2 , или вт/см 2 . При этом 1 эрг/сек=10 -7 вт.

Давление звука измеряется в барах.

Между интенсивностью и давлением звука существует зави­симость:

пользуясь которой можно переводить эти величины одну в дру­гую.

Не менее часто, особенно при рассмотрении слуха рыб, в связи с огромным диапазоном пороговых величин звуковое дав­ление выражают в относительных логарифмических единицах децибеллах, дб. Если звуковое давление одного звука Р , а друго­го Р о, то считают, что первый звук громче второго на k дб и вы­числяют его по формуле:

Большинство исследователей при этом за нулевой отсчет давле­ния звука Р о принимают пороговую величину слуха человека, равную 0,0002 бара для частоты 1000 гц.

Достоинством такой системы является возможность непо­средственного сопоставления слуха человека и рыб, недостат­ком - сложность сопоставления полученных результатов по зву­чанию и слуху рыб.

Фактические величины звукового давления, создаваемого ры­бами, на четыре - шесть порядков выше принятого нулевого уровня (0,0002 бара), а пороговые уровни слуха различных рыб лежат как выше, так и ниже условного нулевого отсчета.

Поэтому для удобства сопоставления звуков и слуха рыб американские авторы (Tavolga a. Wodinsky, 1963, и др.) поль­зуются другой системой отсчета.

За нулевой уровень отсчета принято давление звука в 1 бар, который на 74 дб выше ранее принятого.

Ниже приводится примерное соотношение обеих систем.

Фактические величины по американской системе отсчета в тексте помечены звездочкой.

Гидроакустика (от греч. hydor - вода, akusticoc - слуховой) - наука о явлениях, происходящих в водной среде и связанных с распространением, излучением и приемом акустических волн. Она включает вопросы разработки и создания гидроакустических средств, предназначенных для использования в водной среде.

История развития

Гидроакустика - быстро развивающаяся в настоящее время наука, и имеющая, несомненно, большое будущее. Ее появлению предшествовал долгий путь развития теоретической и прикладной акустики. Первые сведения о проявлении интереса человека к распространению звука в воде мы находим в записках известного ученого эпохи Возрождения Леонардо да Винчи :

Первые измерения расстояния посредством звука произвел русский исследователь академик Я. Д. Захаров. 30 июня 1804 г. он совершил полет на воздушном шаре с научной целью и в этом полете воспользовался отражением звука от поверхности земли для определения высоты полета. Находясь в корзине шара, он громко крикнул в рупор, направленный вниз. Через 10 сек пришло отчетливо слышное эхо. Отсюда Захаров заключил, что высота шара над землей равнялась приблизительно 5 х 334 = 1670 м. Этот способ лег в основу радио и гидролокации.

Наряду с разработкой теоретических вопросов в России проводились практические исследования явлений распространения звуков в море. Адмирал С. О. Макаров в 1881 - 1882 гг. предложил использовать для передачи информации о скорости течения под водой прибор, названный флюктометром. Этим было положено начало развитию новой отрасли науки и техники - гидроакустической телеметрии .

Схема гидрофонической станции Балтийского завода обр.1907г.: 1 - водяной насос; 2 - трубопровод; 3 - регулятор давления; 4 - электромагнитный гидравлический затвор (телеграфный клапан); 5 - телеграфный ключ; 6 - гидравлический мембранный излучатель; 7 - борт корабля; 8 - танк с водой; 9 - герметизированный микрофон

В 1890-х гг. на Балтийском судостроительном заводе по инициативе капитана 2 ранга М. Н. Беклемишева начали работы по разработке приборов гидроакустической связи. Первые испытания гидроакустического излучателя для звукоподводной связи проводились в конце XIX в. в опытовом бассейне в Галерной гавани в Петербурге. Излучаемые им колебания хорошо прослушивались за 7 верст на Невском плавучем маяке. В результате исследований в 1905г. создали первый прибор гидроакустической связи, в котором роль передающего устройства играла специальная подводная сирена, управляемая телеграфным ключом, а приемником сигналов служил угольный микрофон, закрепленный изнутри на корпусе корабля. Сигналы регистрировались аппаратом Морзе и на слух. Позднее сирену заменили излучателем мембранного типа. Эффективность прибора, названного гидрофонической станцией, значительно повысилась. Морские испытания новой станции состоялись в марте 1908г. на Черном море, где дальность уверенного приема сигналов превышала 10км.

Первые серийные станции звукоподводной связи конструкции Балтийского завода в 1909-1910 гг. установили на подводных лодках «Карп» , «Пескарь» , «Стерлядь» , «Макрель » и «Окунь » . При установке станций на подводных лодках в целях уменьшения помех приемник располагался в специальном обтекателе, буксируемом за кормой на кабель-тросе. К подобному решению англичане пришли лишь во время Первой мировой войны. Затем эту идею забыли и только в конце 1950-х г г. ее снова стали использовать в разных странах при создании помехоустойчивых гидролокационных корабельных станций.

Толчком к развитию гидроакустики послужила первая мировая война . Во время воины страны Антанты несли большие потери торгового и военного флота из-за действия немецких подводных лодок. Возникла необходимость в поиске средств борьбы с ними. Вскоре они были найдены. Подводную лодку в подводном положении можно услышать по шуму, создаваемому гребными винтами и работающими механизмами. Прибор, обнаруживающий шумящие объекты и определяющий их местонахождение, был назван шумопеленгатор . Французский физик П. Ланжевен в 1915 г. предложил использовать чувствительный приемник из сегнетовой соли для первой шумопеленгаторной станции.

Основы гидроакустики

Особенности распространения акустических волн в воде

Компоненты события появления эхосигнала.

Начало всесторонних и фундаментальных исследований по распространению акустических волн в воде было положено в годы Второй мировой войны, что диктовалось необходимостью решения практических задач военно-морских флотов и в первую очередь подводных лодок. Экспериментальные и теоретические работы были продолжены и в послевоенные годы и обобщены в ряде монографий. В результате этих работ были выявлены и уточнены некоторые особенности распространения акустических волн в воде: поглощение, затухание, отражение и рефракция.

Поглощение энергии акустической волны в морской воде обуславливается двумя процессами: внутренним трением среды и диссоциацией растворенных в ней солей. Первый процесс преобразует энергию акустической волны в тепловую, а второй - преобразуясь в химическую энергию, выводит молекулы из равновесного состояния, и они распадаются на ионы. Этот вид поглощения резко возрастает с увеличением частоты акустического колебания. Наличие в воде взвешенных частиц, микроорганизмов и температурных аномалий приводит также к затуханию акустической волны в воде. Как правило, эти потери невелики, и их включают в общее поглощение, однако иногда, как, например, в случае рассеяния от следа корабля, эти потери могут составить До 90 %. Наличие температурных аномалий приводит к тому, что акустическая волна попадает в зоны акустической тени, где она может претерпеть многократные отражения.

Наличие границ раздела вода - воздух и вода - дно приводит к отражению от них акустической волны, причем, если в первом случае акустическая волна отражается полностью, то во втором случае коэффициент отражения зависит от материала дна: плохо отражает илистое дно, хорошо - песчаное и каменистое. На небольших глубинах из-за многократного отражения акустической волны между дном и поверхностью возникает подводный звуковой канал, в котором акустическая волна может распространяться на большие расстояния. Изменение величины скорости звука на разных глубинах приводит к искривлению звуковых «лучей» - рефракции.

Рефракция звука (искривление пути звукового луча)

Рефракция звука в воде: а - летом; б - зимой; слева - изменение скорости с глубиной.

Скорость распространения звука изменяется с глубиной, причём изменения зависят от времени года и дня, глубины водоёма и ряда других причин. Звуковые лучи, выходящие из источника под некоторым углом к горизонту, изгибаются, причём направление изгиба зависит от распределения скоростей звука в среде: летом, когда верхние слои теплее нижних, лучи изгибаются книзу и в большинстве отражаются от дна, теряя при этом значительную долю своей энергии; зимой, когда нижние слои воды сохраняют свою температуру, между тем как верхние слои охлаждаются, лучи изгибаются кверху и многократно отражаются от поверхности воды, при этом теряется значительно меньше энергии. Поэтому зимой дальность распространения звука больше, чем летом. Вертикальное распределение скорости звука (ВРСЗ) и градиент скорости оказывают определяющее влияние на распространение звука в морской среде. Распределение скорости звука в различных районах Мирового океана различно и меняется во времени. Различают несколько типичных случаев ВРСЗ:

Рассеивание и поглощение звука неоднородностями среды.

Распространение звука в подводном звук. канале: а - изменение скорости звука с глубиной; б - ход лучей в звуковом канале.

На распространение звуков высокой частоты, когда длины волн очень малы, оказывают влияние мелкие неоднородности, обычно имеющиеся в естественных водоёмах: пузырьки газов, микроорганизмы и т. д. Эти неоднородности действуют двояким образом: они поглощают и рассеивают энергию звуковых волн. В результате с повышением частоты звуковых колебаний дальность их распространения сокращается. Особенно сильно этот эффект заметен в поверхностном слое воды, где больше всего неоднородностей.

Рассеивание звука неоднородностями, а также неровностями поверхности воды и дна вызывает явление подводной реверберации , сопровождающей посылку звукового импульса: звуковые волны, отражаясь от совокупности неоднородностей и сливаясь, дают затягивание звукового импульса, продолжающееся после его окончания. Пределы дальности распространения подводных звуков так же ограничиваются собственными шумами моря, имеющими двоякое происхождение: часть шумов возникает от ударов волн на поверхности воды, от морского прибоя, от шума перекатываемой гальки и т. п.; другая часть связана с морской фауной (звуки, производимые гидробионтами: рыбами и др. морскими животными). Этим очень серьёзным аспектом занимается биогидроакустика.

Дальность распространения звуковых волн

Дальность распространения звуковых волн является сложной функцией частоты излучения, которая однозначно связана с длиной волны акустического сигнала. Как известно, высокочастотные акустические сигналы быстро затухают благодаря сильному поглощению водной средой. Низкочастотные сигналы напротив способны распространяться в водной среде на большие расстояния. Так акустический сигнал с частотой 50 Гц способен распространяться в океане на расстояния в тысячи километров, в то время как сигнал с частотой 100 кГц, обычный для гидролокатора бокового обзора, имеет дальность распространения всего 1-2 км. Приблизительные дальности действия современных гидролокаторов с различной частотой акустического сигнала (длиной волны) приведены в таблице:

Области применения.

Гидроакустика получила широкое практическое применение, поскольку ещё не создано эффективной системы передачи электромагнитных волн под водой на сколько-нибудь значительном расстоянии, и звук поэтому является единственным возможным средством связи под водой. Для этих целей пользуются звуковыми частотами от 300 до 10000 гц и ультразвуками от 10000 гц и выше. В качестве излучателей и приёмников в звуковой области используются электродинамические и пьезоэлектрические излучатели и гидрофоны, а в ультразвуковой - пьезоэлектрические и магнитострикционные.

Наиболее существенные применения гидроакустики:

  • Для решения военных задач;
  • Морская навигация;
  • Звукоподводная связь;
  • Рыбопоисковая разведка;
  • Океанологические исследования;
  • Сферы деятельности по освоению богатств дна Мирового океана;
  • Использование акустики в бассейне (дома или в тренировочном центре по синхронному плаванию)
  • Тренировка морских животных.

Примечания

Литература и источники информации

ЛИТЕРАТУРА:

  • В.В. Шулейкин Физика моря . - Москва: «Наука», 1968г.. - 1090 с.
  • И.А. Румынская Основы гидроакустики . - Москва: «Судостроение», 1979 г.. - 105 с.
  • Ю.А. Корякин Гидроакустические системы . - СПб: «Наука Санкт-Петербурга и морская мощь России», 2002 г.. - 416 с.

Просмотров