Мох мхи индикаторы среды. Архив материалов

ИСПОЛЬЗОВАНИЕ РЕНТГЕНОФЛУОРЕСЦЕНТНОГО АНАЛИЗА ДЛЯ БИОГЕОХИМЧЕСКОЙ ХАРАКТЕРИСТИКИ ИЗМЕНЕНИЙ В РАСТИТЕЛЬНОМ ПОКРОВЕ ЮЖНОГО ПРИБАЙКАЛЬЯ Матяшенко Г.В., Чупарина Е.В., Финкельштейн А.Л. Институт геохимии им. А.П.Виноградова СО РАН, г. Иркутск, e-mail: [email protected] В качестве биоиндикаторов загрязнения наземных экосистем успешно используются мхи. Вследствие физиологических особенностей, они способны поглощать минеральные вещества как из воздушной среды, так и из гумусового слоя почвы. Поэтому мхи применяют для оценки атмосферного загрязнения, а также для тестирования состояния верхнего слоя почвенного покрова. В Прибайкалье широко распространены мхи Pleurozium schreberi и Hylocomium splendens, которые и послужили объектами исследования в данной работе. Нами определены содержания ессенциальных и потенциально токсичных элементов в упомянутых мхах, собранных в районе Южного Байкала, для оценки возможности их использования в качестве биомониторов. Мхи отбирали на северо-западном макросклоне хребта Хамар-Дабан на заложенных ранее (1972 г.) постоянных пробных площадях 50×50 м, на разном удалении от Байкальского целлюлозно-бумажного комбината (БЦБК). Сбор проведен в начале июля 2011 года. Мхи также были отобраны на острове Ольхон (озеро Байкал), относящемся к экологически чистой территории. В каждой точке (БЦБК, пос. Солзан, ключ Голанский, о. Ольхон) составлялись комбинированные образцы, взятые с 5-10 куртин. После высушивания при 40 ºС до постоянного веса образцы очищались от мусора и мертвого материала, оставлялись только зеленые сегменты последних трех лет. Часть предварительно подготовленного материала поступала на анализ. Определение элементного состава мхов выполняли методом рентгенофлуоресцентного анализа (РФА). Образцы растений измельчали в электрической кофемолке. Доизмельчение проводили в ручной кофемолке. При этом достигался необходимый размер частиц (менее 100 мкм). Из навески 1 г измельченного материала прессовали излучатель на подложке из борной кислоты при усилии 16 тонн. Интенсивности аналитических линий Na, Mg, Al, Si, P, S, Cl, K, Ca, Ti, Cr, Mn, Fe, Ni, Cu, Zn, Br, Rb, Sr, Zr, Ba и Pb измеряли на волновом рентгеновском спектрометре S4 Pioneer (Bruker, AXS). Стандартные отклонения, характеризующие внутрилабораторную прецизионность измерений, не превышали 5 %. Правильность результатов оценивали сопоставлением результатов РФА с аттестованными значениями концентраций элементов в польском стандартном материале состава травосмеси INCT-MPH-2 и китайском СО (стандартном образце) состава листьев и веток кустарника (GBW 07602). Значения пределов обнаружения рассчитывали по 3σ критерию, используя стандартные образцы с малым содержанием элемента. Величины пределов обнаружения составили, в мкг/г: Na (30); Mg (10); Al, Mn и Fe (5); Cl, Ti и Ba (4); Si, Zr и Pb (3); P, S, K и Sr (2); Сr (2,6); Ca, Ni, Cu, Zn, Br и Rb (1). Содержание некоторых элементов во мхах, собранных на территориях с разной техногенной нагрузкой, приведены в таблице ниже. В таблице даны минимальные и максимальные содержания элементов во мхах. В последней колонке таблицы представлен диапазон содержания элементов, которые были установлены для мхов, собранных на европейских территориях с разной антропогенной нагрузкой. Как видно, диапазоны содержания большинства элементов, взятые из публикаций, шире, как со стороны минимальных, так и со стороны максимальных концентраций, по сравнению с данными наших исследований. Этот факт объясняется тем, что литературные данные по разным видам мхов с разных природных территорий отличаются степенью техногенного влияния. Сравнивая максимальные концентрации, мы можем предположить, что мхи Прибайкалья меньше подвержены антропогенному воздействию по сравнению с образцами европейских территорий. Таблица Содержания элементов во мхах Элемент Диапазон содержания P, % S, % Cl, % Fe, % Mn, мкг/г Ni, мкг/г Cu, мкг/г Zn, мкг/г Sr, мкг/г Ba, мкг/г Pb, мкг/г 0.079-0.195 0.062-0.125 0.0010-0.0345 0.080-0.345 170-420 3-14 3-10.5 31-66 11-28.5 7-62 3-7 Литературные данные 0.070-0.283 0.061-0.202 0.0045-0.38 0.0068-2.073 22-2200 0.1-93.9 3-200 7.9-877 0.5-339 4-250 2.1-12.2 На рис. 1а и 1б показаны распределения элементов во мхах в зависимости от места отбора. Для обоих видов мхов было выявлено, что концентрации элементов в образцах из фоновых территорий значительно ниже значений, полученных для мест отбора, подверженных антропогенному влиянию. Различие содержаний эссенциальных элементов в фоновых и загрязненных зонах значительно меньше, чем различие содержания микроэлементов. Поэтому использование микроэлементов во мхах предпочтительнее при оценке атмосферного загрязнения территорий. БЦБК 0,6 ключ Голанский Солзан 0,5 Cr *10 Cu *10 Zn Sr C, % БЦБК БЦБК ключ Голанский Солзан Ольхон б 0,3 0,2 0,1 0 Ti Pl. schreberi 0,4 Ольхон Ольхон Ольхон БЦБК Ольхон БЦБК Ольхон 40 БЦБК БЦБК а Ольхон 80 Ольхон Ольхон C, мкг/г 120 БЦБК 160 БЦБК Pl. Schreberi Ba Pb *10 0 Na *10 Mg P S K Ca Рис. 1. Распределение токсичных (а) и эссенциальных (б) элементов в образце Pleurozium schreberi в зависимости от места отбора Таким образом, рентгенофлуоресцентный метод анализа обеспечивает получение необходимых данных об элементном составе мхов. Анализ этих данных показал, что мхи являются информативными видами растений, свидетельствующими о состоянии окружающей среды.

1

Экспериментально показано, что листостебельные мхи могут быть использованы в качестве биоиндикаторов загрязнения окружающей среды нефтепродуктами.

листостебельные мхи

нефтяное загрязнение

биоиндикация

1. Гусев А.П., Соколов А.С. Информационно-аналитическая система для оценки антропогенной нарушенности лесных ландшафтов // Вестник Томского государственного университета. – 2008. – № 309. – С. 176–180.

2. Железнова Г.В., Шубина Т.П. Мхи естественных среднетаежных растительных сообществ Южной части Республики Коми // Теоретическая и прикладная экология. – 2010. – № 4. – С. 76–83.

3. К организации комплексного мониторинга состояния природной среды в районе падения отделяющихся частей ракет-носителей на территории Северного Урала / И.А. Кузнецова, И.Н. Коркина, И.В. Ставишенко, Л.В. Черная, М.Я. Чеботина, С.Б. Холостов // Известия Коми научного центра Уральского отделения РАН. – 2012. – № 2(10) . – С. 57–67.

4. Серебрякова Н.Н. Влияние ксенобиотиков на физиологию и биохимию листостебельных мхов // Вестник Оренбургского государственного университета. – 2007. – № 12. – С. 71–75.

Развитие фундаментальных исследований, связанных с устойчивостью и изменением природных биоценозов под воздействием различных антропогенных факторов, в том числе - ракетно-космической деятельности, не теряет своей актуальности. Необходимость прогноза изменений среды и вызванных ими последствий возрастает пропорционально возрастающему воздействию на естественные природные комплексы. Столь же актуален и поиск путей предотвращения негативных последствий. Однако решить эти вопросы возможно лишь при определении самого факта наличия воздействия и его степени. Настоящее исследование посвящено изучению способности мхов к насыщению нефтепродуктами и возможности использования их в качестве биоиндикаторов при оценке антропогенного воздействия, в частности - нефтяного загрязнения на территории района падения отделяющихся частей ракет-носителей «Союз» (топливо - авиационный керосин) при выведении космических аппаратов на солнечно-синхронную орбиту с космодрома Байконур.

Территория проведения исследований находится на границе Свердловской и Пермской областей, координаты центра района падения (РП) - 60° 00’ с.ш.; 58° 54’ в.д., площадь - 2206,4 км2. За период эксплуатации территории в качестве района падения состоялось 6 пусков ракет-носителей (РН): в декабре 2006, ноябре и декабре 2007, сентябре 2009, июле и сентябре 2012 годов. Фрагменты отделяющихся частей ракет-носителей (ОЧ РН) обнаружены на г. Ольвинский Камень (N 59º 57’, E 59º 12’), на восточном склоне г. Сенной Камень (N 59º 59’, E 59º 06’) и в верховьях р. Улс (N 59º 59’, E 58º 59’). При осуществлении пусков ракет-носителей предусмотрено экологическое сопровождение приема фрагментов ОЧ РН, заключающееся в оценке содержания нефтепродуктов до и после падения ОЧ РН в основных депонирующих средах (почва, снег, вода водных объектов). Результаты этих работ не выявили каких-либо изменений состояния природной среды после пуска РН, как при визуальной оценке, так и при оценке загрязнения ракетно-космическим топливом. Результаты фонового мониторинга содержания нефтепродуктов в депонирующих средах подтвердили данное заключение . Те же результаты получены и при сопровождении пусков 2012 года: различий в содержании нефтепродуктов в допусковых и послепусковых пробах воды и почвы не обнаружено.

В 2011-2012 годах проведены исследования возможности использования зеленых листостебельных мхов в качестве биондикаторов при контроле состояния природной среды и оперативной оценки происходящих изменений при аэрогенном загрязнении нефтепродуктами. Экспериментально установлена их способность к накоплению нефтепродуктов при атмосферном загрязнении.

Широкое распространение, морфологические и физиологические свойства мхов, их способность переносить неблагоприятные условия среды и высокая чувствительность к экотоксикантам позволяют использовать эти растения в качестве биоиндикаторов . Мох «принимает» все микропримеси из атмосферы, удерживая и накапливая их в течение всего времени жизни . Несмотря на то, что за 3-5 лет зеленая (фотосинтезирующая) часть мха полностью обновляется, сам мох живет намного дольше. Мхи не имеют корневой системы, и, следовательно, вклад других источников, кроме атмосферных выпадений, в большинстве случаев органичен. Применяя современные методы химического анализа можно установить элементный состав атмосферных выпадений в месте сбора и количественно определить концентрацию того или иного химического вещества, накопленного мхом за определенный период времени. Использование мхов в качестве индикаторов атмосферного загрязнения имеет существенные преимущества перед традиционными методами, поскольку сбор образцов несложен, не требует дорогостоящей аппаратуры как для пробоотбора воздуха и осадков; процесс сбора, транспортировка и хранение мха менее трудоемок.

Чаще всего для биоиндикации рекомендуют использовать эпифитные мхи, произрастающие на коре деревьев и практически не связанные с почвой (на них практически не сказывается гетерогенный состав почв). Однако, при контроле загрязнения природной среды продуктами ракетно-космической деятельности, в равной степени воздействующей на все компоненты природного комплекса, названная особенность напочвенных мхов не мешает решению поставленной задачи.

Материал и методы исследования

В 2011-2012 гг. проведены экспериментальные исследования адсорбционной способности зеленых листостебельных мхов к накоплению нефтепродуктов. Образцы для исследований отобраны в основных мониторинговых точках района падения ОЧ РН, поскольку сразу же предполагалось использовать полученные значения как фоновые при дальнейших исследованиях в ходе экологического сопровождения пусков ракет-носителей. Места отбора образцов приведены в табл. 1.

Таблица 1

Места отбора проб листостебельных мхов

Место отбора проб

Координаты

Хр. Еловая грива

N 60º 07’ 17»

E 59º 18’ 10»

N 60º 06’ 55»

E 58º 53’ 20»

Хр. Кваркуш склон

N 60º 07’ 30’’

E 58º 45’ 25»

Хр. Кваркуш плато 1

N 60º 08’ 21»

E 58º 47’ 54»

Г. Сенной камень

N 59º 58’ 34’’

E 59º 04’ 59’’

Главный уральский хребет

N 60º 05’ 27»

E 59º 08’ 16»

Хр. Кваркуш плато 2

N 60º 09’ 33’’

E 58º 41’ 30’’

Г. Казанский камень

N 60º 06’ 41’’

E 59º 02’ 53’’

Г. Ольвинский камень

N 59о 54’ 10’’

E 59о 10’ 10’’

Г. Конжаковский камень

N 59º 37’ 59’’

E 59º 08’ 26’’

Для химического анализа отбирались пробы листостебельных мхов семейства Polytrichaceae (политриховые). При определении содержания нефтепродуктов, пробы мха экстрагировали гексаном, концентрацию нефтепродукта в экстракте определяли на приборе «Флюорат-02» по методике ПНД Ф 16.1:2.21-98 (Методика выполнения измерений массовой доли нефтепродуктов в пробах почв, грунтов флуориметрическим методом с использованием анализатора жидкости «Флюорат-02»). Отдельно определили влажность мха и проводили пересчет концентраций нефтепродуктов на сухое вещество пробы.

Эксперимент по насыщению мха керосином проводили статическим методом. В герметичный контейнер помещали навеску керосина. После ее испарения определяли его содержание в паровой фазе, затем в контейнер с пробой керосина вносили навеску пробы мха. Поскольку допускалось, что отмершие части растений и живые могут по-разному адсорбировать нефтепродукты, в первый год работы пробы по этому признаку были разделены, и отмершие и живые части анализировались раздельно. После выдержки в течение 5 суток определяли содержание керосина в пробах мха. Коэффициент разделения вычисляли как отношение концентрации керосина в пробе мха к остаточной концентрации керосина в паровой фазе.

Результаты исследования и их обсуждение

В табл. 2 представлены полученные значения содержания нефтепродуктов в сухих пробах мха: от 0,008 до 0,056 мг/кг сухой пробы (в среднем - 0,028 мг/кг) при влажности 23-56 %.

Учитывая, что пробы для определения содержания нефтепродуктов отбирались в периоды, не связанные с эксплуатацией территории в ракетно-космической деятельности (т.е. - вне пусков ракет-носителей), на территории, не подверженной антропогенному воздействию, полученные значения могут быть расценены при дальнейших исследованиях как фоновые.

Таблица 2

Результаты фонового мониторинга состояния листостебельных мхов в районе падения ОЧ РН

В 2011 году начато исследование адсорбционной способности мхов, и прежде всего проведен анализ способности к насыщению нефтепродуктами живых зеленых и отмерших частей мха. Обнаруженные различия незначительны и незакономерны (табл. 3), что позволяет ими пренебречь и в дальнейшем использовать в качестве анализируемой пробы образец мха целиком (без разделения на живые и отмершие части).

Таблица 3

Результаты экспериментального исследования по насыщению листостебельных мхов парами керосина

Место отбора проб

Коэффициент разделения содержания нефтепродуктов в сухом мхе (тв. фаза)/в паровой фазе

верхняя (зеленая) часть мха

нижняя (отмершая) часть мха

суммарная проба мха

Хр. Еловая грива

Хр. Кваркуш склон

Хр. Кваркуш плато 1

Г. Сенной камень

Хр. Кваркуш плато 2

Г. Казанский камень

Г. Ольвинский камень

Г.Конжаковский Камень

Полученные результаты убедительно подтверждают возможность использования листостебельных мхов в качестве организмов-биоиндикаторов при оперативной оценке атмосферного загрязнения природной среды нефтепродуктами. Тот факт, что живые зеленые и отмершие части мха в равной степени реагируют на насыщение парами керосина, существенно облегчает работу при использовании мхов в ведении комплексного экологического состояния природной среды.

Заключение

В результате проведенных экспериментальных исследований получены фоновые значения уровня содержания нефтепродуктов в листостебельных мхах, широко распространенных на территории Северного Урала, и в том числе - в районе падения отделяющихся частей ракет-носителей. В среднем в тканях мхов в естественной среде содержится 0,028 мг/кг сухой массы при влажности 23-56 %. Установлена высокая адсорбционная способность зеленых мхов: при пятидневной выдержке в парах керосина содержание нефтепродуктов в пробах мха возрастает на порядок. Полученные результаты подтверждают возможность использования листостебельных мхов в качестве биоиндикаторов как минимум при оценке атмосферного загрязнения нефтепродуктами. Определение фоновых значений позволяет рекомендовать использование этого объекта при экологическом сопровождении предстоящих пусков ракет-носителей как на территории Свердловской области, так и во всех иных районах падения ОЧРН, расположенных в лесной и горно-лесной зоне.

Работа выполнена по проекту ориентированных фундаментальных исследований в рамках соглашений о сотрудничестве УрО РАН с государственными корпорациями, научно-производственными объединениями № 12 -4-006-КА.

Библиографическая ссылка

Кузнецова И.А., Холостов С.Б. Листостебельные мхи как биоиндикаторы нефтяного загрязнения природной среды района падения отделяющихся частей ракет-носителей // Успехи современного естествознания. – 2013. – № 6. – С. 98-101;
URL: http://natural-sciences.ru/ru/article/view?id=32490 (дата обращения: 26.02.2020). Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»

Для быстрой оценки основных характеристик почвы на участке существует много методов, и один из них: по дикорастущим растениям-индикаторам. Благодаря им можно визуально определить, например, кислотность, механический состав, питательность, плотность, влажность почвы.

Большинство культурных садовых растений адаптированы к широким пределам рН и погибают только при крайних значениях кислотности почв.

Наименее чувствительны к кислотности колокольчики, фиалки, ирисы, гладиолусы, можжевельники, злаки. Типичные любители «кисленького» - азалии, рододендроны, верески. Нейтральную реакцию почвы предпочитают гиацинты, тюльпаны, виолы; щелочную - чистец пушистый, эдельвейс альпийский, гипсофила и др.

Индикаторы кислотности. Индикаторы очень кислых почв (рН 3,0-4,5) - сфагновые и зеленые мхи, плауны, вереск обыкновенный, белоус торчащий, пушица влагалищная, щучка дернистая.

Обитатели кислых и слабокислых почв - конский щавель, щавелек малый, торица полевая, майник двулистный, кошачья лапка двудомная, мать-и-мачеха, медуница неясная, мята полевая, вероника лекарственная, подорожник большой, папоротник мужской, фиалка собачья, пикульник красивый, куриное просо, хвощ полевой, лютики ползучий и едкий.

Индикаторы бедных почв - сфагновые мхи и лишайники, багульник болотный, брусника, клюква, черника, вереск обыкновенный, белоус торчащий, бессмертник песчаный, очиток едкий, кошачья лапка двудомная, ястребинка волосистая, щавелек малый. Плодородные участки предпочитают копытень европейский, яснотка, крапива, лебеда, белена черная, малина, мокрица, печеночница.

На высокое содержание азота указывают крапива двудомная и жгучая, кипрей, крестовник весенний, лебеда татарская, хмель, щирица запрокинутая, калужница. А присутствие растений из семейства Бобовые - дрока красильного, лядвенца рогатого, люцерны и астрагала - говорит о его недостатке. На низкое содержание в почве азота указывает и присутствие росянки, мелколепестника канадского, льнянки.

Индикаторы легких почв - бессмертник песчаный, очиток едкий, сосна обыкновенная. На тяжелых глинистых часто встречаются лапчатка гусиная, лютик ползучий, подорожник, горец птичий, бересклет бородавчатый.

Дрема белая - индикатор щелочных почв

Мокрица - индикатор нейтральных почв

Щучка дернистая - индикатор очень кислых почв

Крапива двудомная - высокое содержание азота в почве

Мята полевая - индикатор слабокислых почв

Если вам понравился этот материал, то предлагаем вам подборку самых лучших материалов нашего сайта по мнению наших читателей. Подборку - ТОП о существующих экопоселениях, Родовых поместьях, их истории создания и все об экодомах вы можете найти там, где вам максимально удобно

МХИ - БИОИНДИКАТОРЫ ЗАГРЯЗНЕНИЯ.

Основная часть выбросов в атмосферу - 70,4 процента приходится на промышленные центры республики, где сосредоточены крупные предприятия. Тяжелые металлы переносятся в атмосфере на большие расстояния от источника выбросов и, осаждаясь, негативно воздействуют на окружающую среду. Сера может служить индикатором антропогенного воздействия на природные объекты, а также косвенным показателем эмиссий тяжелых металлов. Среди источников загрязнения - термоэлектрические устройства, транспортные средства, промышленное, коммунальное, а также сельское и лесное хозяйство.

Для ученых зеленые мхи и лесные подстилки - надежные источники информации о загрязнении окружающей среды. Мхи - это биоиндикаторы загрязнения, из воздуха они аккумулируют тяжелые металлы, оксиды серы, азота и другие вещества. По химическому составу мхов и подстилок можно судить об источниках, ареалах, степени загрязнения окружающей среды, а также выявить основные вещества-загрязнители. Институтом леса Карельского центра РАН при финансовой поддержке госкомитета охраны окружающей среды по РК проведено изучение загрязнения среды тяжелыми металлами и серой путем химического анализа зеленых мхов и лесных подстилок.

По итогам исследований вышла в свет книга "Загрязнение лесной территории Карелии тяжелыми металлами и серой". Среди авторов Н.Федорец, В.Дьяконов, Г.Шильцова, П.Литинский. Приводятся результаты изучения пространственного распределения тяжелых металлов и серы на всей территории Карелии. Установлены региональные фоновые концентрации металлов в мхах и подстилках. Представлены цветные компьютерные картосхемы загрязнения территории республики тяжелыми металлами и серой, дана оценка уровней их содержания.

Работа ученых может заинтересовать интерес экологов, почвоведов, географов, ботаников и других специалистов в области охраны природы.

НАТАЛЬЯ ФЕДОРЕЦ, заведующая лабораторией лесного почвоведения и микробиологии Института леса, доктор сельскохозяйственных наук.

РАННЕЕ ЛЕТО НЕ ОБМАНЕТ.

Вторая декада апреля в европейской части России выдалась поразительно теплой. Причем резко - буквально за неделю - мы перешли от теплых плащей чуть ли не к майкам.

Но вместе с теплом и свободой одежды пришла к нам и томительная усталость, когда среди бела дня так неожиданно тянет в глубокий сон. Многих от резкой смены погоды мучают головные боли и дискомфорт.

Феномен весенней усталости интересует медиков уже давно, - говорит доктор психологических наук Сергей Зебров. - Действительно, несколько странно, что, когда природа просыпается от зимней спячки, человек испытывает постоянную усталость, раздражительность, ночной сон становится тревожным и приносит мало облегчения.

Попытки объяснить феномен "весенней усталости" предпринимались не раз. В основном, сезонные недомогания объяснялись авитаминозом - дескать, не хватает витаминов и отсюда все проблемы. Но и внедрение в широкий оборот современных поливитаминов не помогло преодолеть весеннюю усталость.

Очевидно, суть вопроса несколько глубже.

Наши исследования показали, что людей, жалующихся на утомляемость в апреле и мае, стало больше после перехода на так называемое летнее время, - поясняет Сергей Зебров. - А в целом почти у всех людей переход от зимней оцепенелости к весеннему пробуждению вызывает в организме определенный стресс, который преодолевать надо грамотно и постепенно.

Итак, что рекомендуют специалисты для борьбы с весенней усталостью? Во-первых, строго соблюдать режим дня. Ложиться спать, даже в выходные, стоит не позже половины одиннадцатого вечера, а спать не менее девяти часов в хорошо проветриваемом помещении. Неплохо перед сном совершить получасовую прогулку.

Пробуждаться тоже следует не в спешке - минут пятнадцать понежиться в постели, сделать легкие движения руками и ногами и лишь потом приступать к основной зарядке и бодрящему душу.

Во-вторых, следует внимательно следить за рационом, отдавая предпочтение рыбным и вегетарианским блюдам. Не секрет, что после Великого поста многие налегают на мясное, словно хотят наверстать упущенное, отвыкший от такой пищи желудок переносит свое "недовольство" на весь организм. Крайне нежелательно в это время злоупотреблять спиртным. Если пара рюмок водки в морозный или промозглый день не только вызывала приятные эмоции, но и тонизирующе действовала на самочувствие, то в период смены сезонов спиртное приводит к обратным результатам.

Ну и наконец, чтобы побороть весеннюю усталость, следует больше... смеяться, что рекомендовал еще в конце прошлого века знаменитый венский врач Крафт-Эбинг. Смех быстро снимет утомленность, успокоит нервы и настроит на спокойный лад.

Анекдот или юмореска, рассказанная шефом, позволит разрядить напряжение, способное перерасти в большой конфликт в коллективе.

Кстати, не стоит в дни перемены погоды утомлять себя и окружающих разговорами о том, каким будет это лето. Теплая погода апреля вовсе не означает, что оно будет жарким. Так, в 1983 году уже первого апреля в Москве было двадцать градусов тепла. А июнь оказался прохладным и весьма дождливым.

Просмотров