Как рассчитать материалы для навеса. Как правильно рассчитать фермы для навесов: чертеж и правила сборки

Предтечей строительства стационарного навеса являются расчеты. Расчет навеса необходим для того, чтобы конструкция была надежной, выдерживала собственный вес, а также нагрузки, создаваемыми ветром и снегом. В рамках данной публикации мы поговорим лишь о чертеже и расчетах различных частей конструкции на примере автомобильного навеса из поликарбоната. Весь пакет проектной документации куда больше и ему будет посвящена отдельная статья.

О чем нужно помнить, готовя проект?

Перед тем как изготовить чертеж навеса из поликарбоната, необходимо определиться с общей проектной и дизайнерской концепцией, а именно как будет выглядеть конструкция, какую она будет иметь форму, для чего будет предназначена. Далее нужно нарисовать эскиз сооружения, где указать общие размеры навеса из поликарбоната (длину, ширину и другие параметры) и его основных элементов. На следующем этапе можно готовить чертеж навеса для автомобиля из поликарбоната, при этом необходимо помнить.


К сведению! Готовя чертеж сооружения необходимо найти и приложить к нему технические данные об используемых материалах.

Рассчитываем ферму арочного типа

Мы имеем эскиз большого автомобильного навеса из металла, рассчитанного на 2 машины с крышей арочного типа (дуга) покрытой листами сотового поликарбоната. Ширина навеса от опоры до опоры составляет 5,8 метра, ширина арочной фермы (дуги) должна составлять 6 м. Давайте рассчитаем сечение профиля, который будет использоваться при изготовлении арочного перекрытия.

ɒ пр =(ɒ 2 +4t 2) 0,5 ≥R/2, расшифруем данную формулу:

  • ɒ — нормативное напряжение;
  • R – крепость железа С235, около 2440 кгс/см 2 ;
  • t – напряжение по касательной.

Теперь последовательно подбирая показатели, мы можем вычислить профиль подходящего сечения, чтобы он мог выдержать искомые нагрузки. Берем квадратную профильную трубу 30х30х3,5 мм с сечением 35 мм 2 с моментом инерции 3.98 см 4 , коэффициентом сопряжения нагрузки 0,5, предполагаемая нагрузка на замковую часть арки 914,82 кгс.

Все необходимые данные для вычисления собраны, формула есть, теперь остается подставить данные в формулу и получить расчет нагрузки на арочную ферму (дуга) автомобильного навеса из поликарбоната.

ɒ пр =((914,82/3,5) 2 +4(919,1*1,854/((0,35+0,35)3,98) 2)0,5 =1250,96 кг/см 2 .

Что это значит? А это значит, что если мы сварим или скрутим шестиметровую арку из профиля 30х30х3,5 мм, она вполне выдержит собственный вес и вес кровельного материала, то есть сотового поликарбоната. Даже имеется приличный запас.

Рассчитываем опорную часть конструкции

Далее необходимо рассчитать какими будут опоры у автомобильного навеса из поликарбоната. Существует специальная методика, по которой принято рассчитывать стальные колонны, без нее адекватный расчет навеса невозможен. Применим формулу:

F=N/ϕR у. Расшифруем формулу:

  • F – сечение квадратной трубы, которую можно использовать в качестве опоры;
  • ϕ — коэффициент, определяющий продольный изгиб;
  • R у – значение сопротивления материала.

Для того чтобы произвести расчеты, придется найти данные о сопротивлении материалов. В нашем случае сопротивление стальных квадратных труб 70х70, 80х80, 100х100 мм, найденные значения нужно будет сравнить с результатами вычислений и сделать выводы. Производим расчеты:

F=3000/(0,599*2050)

В результате получаем значение 2,44 см 2 , которое необходимо округлить в большую сторону. В итоге, значение на которое нам следует опираться при поиске подходящего профиля 2,5 см 2 . Этим показателям соответствует квадратная стальная труба 70х70х2 мм, даже имеется небольшой запас.

Нагрузки на крышу от снега и ветра

Ответить на вопрос, как рассчитать навес для авто можно только если произвести расчет несущих конструкций сооружения и нагрузки на крышу от снега и ветра. С расчетом несущих конструкций мы в общих чертах разобрались. Теперь нужно решить проблему с нагрузками от ветра и снега.

Чтобы получить необходимые для вычисления данные, нужно обратиться к показателям средней нагрузки от ветра и снега в вашем регионе. Найти такие сведения можно в соответствующем СНиПе.

Для примера возьмем значение ветровой нагрузки 23кг/м 2 . Но в нашем случае данная величина не подойдет потому что 23кг/м 2 определена для зданий и сооружений у которых есть стены. У автомобильного навеса есть опоры, дуги, перемычки, прогон и кровля, поэтому давление будет оказываться лишь на них. Определяем среднее ветровое воздействие на навес получаем 0,34 при высоте опор свыше трех метров значение от 0,34 до 0,75 кг/м 2 . Вычисляем максимальную нагрузку создаваемую ветром на всю конструкцию: дуги, опоры, прогон, кровлю.

W m =23*0,75*0,34. В результате получаем значение равное 5,9. Теперь вычислим нагрузку создаваемую снежным покровом. Эти нагрузки в разных регионах страны отличаются, причем отличаются значительно. В горных районах такая нагрузка может составлять более 600 кг/м 2 , но мы в качестве примера возьмем более скромный показатель 180 кг/м 2 (Московская область).

Чтобы вычислить максимальную нагрузку на навес нужно 180 умножить на значение коэффициента перехода, которое еще предстоит получить. На рисунке ниже представлен расчет нагрузки снега на навес.

Максимальную нагрузку снега на навес вычислили. Теперь нам остается узнать показатель инерции для выбранного нами кровельного материала. Такие данные в обычном коммерческом описании материала не возьмешь, но в техническом описании это есть. Например, у сотового поликарбоната толщиной 12 мм, инерция 3,41 см 4 . Найдите материал с расчетным значением или больше такового и можете смело пускать его на кровлю автомобильного навеса. Подробнее о том из чего можно сделать кровлю для навеса вы можете прочитать в статье .

В заключение, отметим, конструкции навесов для автомобилей не так уж сложны, тем не менее, вольно к строительству подобных сооружений относиться нельзя. Вначале общее устройство навеса нужно нарисовать на эскизе, указав длину элементов конструкции, их диаметр и другие простые параметры. После этого можно приступать к расчетам и изготовлению чертежа. В процессе работы придется рассчитать параметры арочной фермы (дуги) и многое другое. Если вы чувствуете, что данная работа вам не по силам обратитесь к специалисту. Удачи!

В статье «Как определить нагрузку на крышу в вашем районе» мы определились с вариантом классической двухскатной крыши. Но очень часто бывают ситуации, когда к дому пристраиваются навесы, и не каждый знает, что эти навесы будут нагружены снегом значительно больше, чем сама крыша. При сборе нагрузок от снега есть такое понятие как снеговой мешок. Если на крыше есть перепады высоты, либо просто навес примыкает к высокой стене, то создаются благоприятные условия для наметания сугроба в этом месте. И чем выше стена, к которой примыкает крыша, тем больше будет высота этого сугроба, и тем больше нагрузка будет воздействовать на несущие конструкции. Иногда снеговой мешок способен увеличить стандартную снеговую нагрузку в несколько раз.

Разберем ситуацию на примере.

Дом с двускатной крышей. К нему с двух сторон пристраивается навес. Необходимо определить снеговую нагрузку на 1 м 2 крыши дома и двух навесов. Район строительства – Киевская область (160 кг/м 2).

1) Определим снеговую нагрузку на крышу дома.

Угол наклона крыши 35 градусов. Откроем схему 1 приложения Ж ДБН В.1.2-2:2006 «Нагрузки и воздействия».

Т.к. угол наклона крыши не вписывается в диапазон 20-30 градусов, и мостики с фонарями отсутствуют, то нам нужно взять схему нагрузки по варианту 1 – одинаковую для всей крыши.

По интерполяции определяем:

S e = γ fe S 0 C = 0,49*160*0,71 = 55,7 кг/м 2 ;

γ fe

S 0

С = μC e C alt = 0.71*1*1 = 0.71 – согласно п. 8.6 ДБН.

S m = γ fm S 0 C = 1.14*160*0,71 = 129.5 кг/м 2 ;

γ fm = 1.14 – согласно таблице 8.1 ДБН «Нагрузки и воздействия» при условии срока службы дома 100 лет (задается заказчиком),

S 0 = 160 кг/м 2 – согласно исходным данным,

С = μC e C alt = 0.29*1*1 = 0.71 – согласно п. 8.6 ДБН.

2) Определим снеговую нагрузку на навес, расположенный вдоль длинной (12-метровой) стороны здания.

Откроем схему 8 приложения Ж ДБН В.1.2-2:2006 «Нагрузки и воздействия».

Т.к. у нас навес, а не веранда со стенами, нам нужно остановиться на варианте «б».

h = 1 м > S 0 /2 h μ определять нужно. (В противном бы случае для всего навеса действовал бы один коэффициент μ 1).

Определим коэффициент μ для нашего случая:

μ = 1 + (m 1 L 1 " + m 2 L 2 " )/h = 1 + (0.3*9 + 0.19*2)/1 = 4,08,

при этом μ = 4,08 < 6 (для навесов) и μ = 4,08 > 2h / S 0 μ = 1.25.

m 1 = 0,3 – для плоского покрытия дома с уклоном более 20 градусов;

m 2 = 0,5k 1 k 2 k 3 = 0,5*0,46*0,83*1 = 0,19 (при длине навеса вдоль дома a < 21 м);

k 1 = √а /21 = √4,5/21 = 0,46 (здесь а

k 2 = 1 – β /35 = 1 – 6/35 = 0,83 (здесь β – угол уклона навеса);

k 3 = 1 – φ /30 = 1 – 0/30 = 1 > 0,3 (здесь φ

L 1 " = L 1 = 9 м – при отсутствии фонарей;

L 2 " = L 2

h

μ = 4,08 > 2 h / S 0 = 2*1/1.6 = 1.25 (здесь μ b по формуле:

b = 2h (μ – 1 + 2m 2 )/(2h / S 0 – 1 + 2m 2 ) = 2*1(4,08 – 1 + 2*0.19)/(2*1/1,6 – 1 + 2*0,19) = 11 м < 16 м.

Т.к. b = 11 м > 5h b = 5 м.

Сравним величины:

b = 5 м > L 2

Определим коэффициент μ 1 :

μ 1 = 1 – 2 m 2 = 1 – 2*0,19 = 0,62.

Эксплуатационная снеговая нагрузка на 1 м 2 горизонтальной проекции крыши дома определяется по формуле 8.2:

S e = γ fe S 0 C = 0,49*160*1,25 = 98 кг/м 2 ;

S e 1 = γ fe S 0 C 1 = 0,49*160*0,62 = 48,6 кг/м 2 ;

γ fe = 0,49 – согласно таблице 8.3 ДБН «Нагрузки и воздействия»,

S 0 = 160 кг/м 2 – согласно исходным данным,

С = μC e C alt =

С 1 = μ 1 C e C alt = 0,62*1*1 = 0,62 – согласно п. 8.6 ДБН.

Предельное расчетное значение нагрузки на 1 м 2 горизонтальной проекции крыши дома определяется по формуле 8.1:

S m = γ fm S 0 C = 1.14*160*1,25 = 228 кг/м 2 ;

S m 1 = γ fm S 0 C 1 = 1.14*160*0,62 = 113 кг/м 2 ;

γ fm

3) Определим снеговую нагрузку на навес, расположенный вдоль короткой (9-метровой) стороны здания.

Для этого навеса из-за формы фронтона величина перепада h будет разной, поэтому снеговая нагрузка будет переменной не только поперек, но и вдоль навеса.

a. Найдем значения снеговой нагрузки для максимального значения высоты перепада h = 4,5 м.

Проверим, нужно ли учитывать местную нагрузку у перепада (здесь и ниже величина S 0 берется в кПа):

h = 4,5 м > S 0 /2 h = 1.6/(2*4,5) = 0.17 м – учитывать местную нагрузку необходимо, коэффициент μ определять нужно.

Определим коэффициент μ :

μ = 1 + (m 1 L 1 " + m 2 L 2 " )/h = 1 + (0.4*12 + 0.25*2)/4,5 = 2,18,

при этом μ = 2,18 < 6 (для навесов) и μ = 2,18 < 2h / S 0 = 2*4,5/1.6 = 5,6 – окончательно принимаем μ = 2,18.

m 1 = 0,4 – для плоского покрытия дома с уклоном менее 20 градусов (в этом направлении уклона у крыши нет);

m 2 = 0,5k 1 k 2 k 3 a < 21 м);

k 1 = √а /21 = √7,5/21 = 0,6 (здесь а – длина навеса вдоль здания);

k 2 = 1 – β /35 = 1 – 6/35 = 0,83 (здесь β – угол уклона навеса);

k 3 = 1 – φ /30 = 1 – 0/30 = 1 > 0,3 (здесь φ – угол уклона навеса вдоль дома, его можно увидеть в варианте «в» схемы 8).

L 1 " = L 1

L 2 " = L 2 = 2 м – при отсутствии фонарей;

h = 4,5 м – величина перепада между крышей и навесом.

Найдем длину зоны повышенных снегоотложений. Проверим условие:

μ = 2,18 < 2 h / S 0 = 2*4,5/1.6 = 5,6, тогда находим b по формуле:

b = 2h = 2*4.5= 9 м < 16 м.

Сравним величины:

b = 9 м > L 2 = 2 м – расчет ведем по варианту 2 схемы 8.

Определим коэффициент μ 1 :

μ 1 = 1 – 2 m 2 = 1 – 2*0,25 = 0,5.

Эксплуатационная снеговая нагрузка на 1 м 2 горизонтальной проекции крыши дома определяется по формуле 8.2:

S e = γ fe S 0 C = 0,49*160*2,18 = 171 кг/м 2 ;

S e 1 = γ fe S 0 C 1 = 0,49*160*0,5 = 39,2 кг/м 2 ;

γ fe = 0,49 – согласно таблице 8.3 ДБН «Нагрузки и воздействия»,

S 0 = 160 кг/м 2 – согласно исходным данным,

С = μC e C alt = 2,18*1*1 = 2,18 – согласно п. 8.6 ДБН,

С 1 = μ 1 C e C alt =

Предельное расчетное значение нагрузки на 1 м 2 горизонтальной проекции крыши дома определяется по формуле 8.1:

S m = γ fm S 0 C = 1.14*160*2,18 = 398 кг/м 2 ;

S m 1 = γ fm S 0 C 1 = 1.14*160*0,5 = 91,2 кг/м 2 ;

γ fm = 1.14 – согласно таблице 8.1 ДБН «Нагрузки и воздействия» при условии срока службы дома 100 лет (задается заказчиком).

b. Найдем значения снеговой нагрузки для минимального значения высоты перепада h = 1,0 м.

Проверим, нужно ли учитывать местную нагрузку у перепада (здесь и ниже величина S 0 берется в кПа):

h = 1 м > S 0 /2 h = 1.6/(2*1) = 0.8 м – учитывать местную нагрузку необходимо, коэффициент μ определять нужно.

Определим коэффициент μ для нашего случая:

μ = 1 + (m 1 L 1 " + m 2 L 2 " )/h = 1 + (0.4*12 + 0.25*2)/1 = 6,3,

при этом μ = 6,3 > 6 (для навесов) и μ = 6.3 > 2h / S 0 = 2*1/1.6 = 1.25 – окончательно принимаем μ = 1.25.

m 1 = 0,4 – для плоского покрытия дома с уклоном менее 20 градусов (в этом направлении уклон крыши равен нулю);

m 2 = 0,5k 1 k 2 k 3 = 0,5*0,6*0,83*1 = 0,25 (при длине навеса вдоль дома a < 21 м);

k 1 = √а /21 = √7,5/21 = 0,6 (здесь а – длина навеса вдоль здания);

k 2 = 1 – β /35 = 1 – 6/35 = 0,83 (здесь β – угол уклона навеса);

k 3 = 1 – φ /30 = 1 – 0/30 = 1 > 0,3 (здесь φ – угол уклона навеса вдоль дома, его можно увидеть в варианте «в» схемы 8).

L 1 " = L 1 = 12 м – при отсутствии фонарей;

L 2 " = L 2 = 2 м – при отсутствии фонарей;

h = 1 м – величина перепада между крышей и навесом.

Найдем длину зоны повышенных снегоотложений. Проверим условие:

μ = 6.3 > 2 h / S 0 = 2*1/1.6 = 1.25 (здесь μ берем найденное в расчете, а не принятое окончательно), тогда находим b по формуле:

b = 2h (μ – 1 + 2m 2 )/(2h / S 0 – 1 + 2m 2 ) = 2*1(6.3 – 1 + 2*0.25)/(2*1/1,6 – 1 + 2*0,25) = 15.5 м < 16 м.

Т.к. b = 15,5 м > 5h = 5*1 = 5 м, окончательно принимаем b = 5 м.

Сравним величины:

b = 5 м > L 2 = 2 м – расчет ведем по варианту 2 схемы 8.

Определим коэффициент μ 1 :

μ 1 = 1 – 2 m 2 = 1 – 2*0,25 = 0,5.

Эксплуатационная снеговая нагрузка на 1 м 2 горизонтальной проекции крыши дома определяется по формуле 8.2:

S e = γ fe S 0 C = 0,49*160*1,25 = 98 кг/м 2 ;

S e 1 = γ fe S 0 C 1 = 0,49*160*0,5 = 39,2 кг/м 2 ;

γ fe = 0,49 – согласно таблице 8.3 ДБН «Нагрузки и воздействия»,

S 0 = 160 кг/м 2 – согласно исходным данным,

С = μC e C alt = 1,25*1*1 = 1,25 – согласно п. 8.6 ДБН,

С 1 = μ 1 C e C alt = 0,5*1*1 = 0,5 – согласно п. 8.6 ДБН.

Предельное расчетное значение нагрузки на 1 м 2 горизонтальной проекции крыши дома определяется по формуле 8.1:

S m = γ fm S 0 C = 1.14*160*1,25 = 228 кг/м 2 ;

S m 1 = γ fm S 0 C 1 = 1.14*160*0,5 = 91,2 кг/м 2 ;

γ fm = 1.14 – согласно таблице 8.1 ДБН «Нагрузки и воздействия» при условии срока службы дома 100 лет (задается заказчиком).

Итак, если сравнить результаты для трех частей примера, мы получаем следующее:

На рисунке графически показано соотношение проекций эксплуатационных снеговых нагрузок для дома и двух навесов. Для дома наименьшая снеговая нагрузка 55,7 кг/м 2 (показана синим). Для первого навеса (вдоль 12-метровой стены дома) уже получается огромный «сугроб», нагрузка от которого составляет 98 кг/м 2 у стены дома и 48,6 кг/м 2 на краю навеса (показано розовым). Для второго навеса, расположенного у высокого фронтона дома (вдоль 9-метровой стены дома), ситуация ухудшилась в разы: сугроб достигает максимальных размеров у стены в районе самой высокой точки конька и дает нагрузку 170 кг/м 2 , затем его «высота» падает к краям дома до 98 кг/м 2 с одной стороны и до 122 кг/м 2 с другой (находим интерполяцией), а к краю навеса нагрузка снижается до 39,2 кг/м 2 (показано зеленым).

Обратите внимание, на рисунке даны не размеры «сугробов», а величина нагрузки, которую будут давать наметаемые сугробы. Это важно.

В итоге, наш анализ на примере показал, что пристраиваемые навесы несут в себе опасность значительного перегруза конструкций, особенно те, которые примыкают к высокой вертикальной стене дома.

Напоследок дам один совет: чтобы максимально облегчить нагрузку на навес, пристраиваемый к стене, параллельной коньку дома, нужно воспользоваться условием из схемы 8 приложения Ж к ДБН «Нагрузки и воздействия» (мы это условие проверяли в самом начале расчета):

Если бы в нашем примере высота перепада была не 1 м, а 0,7 м, то выполнялось бы следующее условие:

h = 0,7 м < S 0 /2 h = 1.6/(2*0,7) = 1,14 м – и как написано в п. 3, местную нагрузку у перепада учитывать уже не нужно. Что это означает? Когда местную нагрузку учитывать надо, возле перепада снеговая нагрузка определяется с коэффициентом μ , а у края навеса – со значительно меньшим коэффициентом μ 1 . Если же местную нагрузку учитывать не надо, то нагрузка на всем навесе определяется с коэффициентом μ 1 . В нашем примере соотношение μ/ μ 1 = 1,25/0,62 = 2, т.е. подняв навес на 30 см, мы можем понизить снеговую нагрузку для него в два раза.

В данной статье примеры считались по украинским нормам (ДБН «Нагрузки и воздействия»). Если вы считаете по другим нормам, сверяйте коэффициенты, в остальном схемы снеговых нагрузок ДБН и СНиП одинаковы.

Металлические фермы для навеса - одни из самых элементарных строений. Их часто возводят на дачных участках и территориях загородных домов. Это простые конструкции из каркаса, покрытия и дополнительных элементов. Из них можно сделать навес, закрывающий место, выделенное под хранение вещей, или создать мини-стоянку для автомобиля . Всю сборку можно сделать самостоятельно, но чтобы ферма получилась прочной и долговечной, необходимы правильные расчеты.

Навесы предназначены для обеспечения места под хранение вещей или возведения мини-стоянки для машины

Виды конструкций

Фермы изготавливают из профилей прямоугольной формы или металлических уголков. Материал выбирается в зависимости от типа конструкции и вида поясов. Пояса - это основа фермы, они располагаются снизу и сверху сооружения и формируют его пространственное очертание. Для изготовления маленьких конструкций используют профильные трубы .

Фермы имеют несколько форм:

  1. Полигональные. Этот тип ферм предназначен для установки на пролетах длиной от 10 метров и больше. Если устанавливать навес на маленьком участке, то конструкцию комплектуют дополнительными деталями, что усложняет ее сборку. Навесы, изготовленные на производстве и имеющие дугообразную форму, являются исключением.
  2. Треугольные. Это двускатный навес с уклоном 22-30 градусов. Его часто устанавливают в тех регионах, где выпадает большое количество снеговых осадков. Недостаток изделия - острый узел в основании конструкции и длинные опоры, расположенные в центре. Эти участки нужно правильно рассчитать и отметить на чертеже. Поликарбонатные фермы для навеса маленьких размеров имеют пропорции по отношению к высоте и ширине не более ¼, 1/5.

    Существует множество видов ферм для каркаса, отличаются они сложностью постройки и имеют разный ряд преимуществ

  3. Параллельные. Согласно чертежу, уклон готового изделия составляет не более 1,5%. При этом соотношение высоты и длины варьируется от 1/6 до 1/8. Изделие используют для плоского навеса, который планируется отделывать рулонной облицовкой. Стержни поясов, создающие пространственную решетку, имеют равномерную длину, из-за этого получается минимум соединительных узлов.
  4. Арочные. Это самая удобная конструкция фермы. Она позволяет скрывать изгибающие линии в поперечных сечениях каркаса. К тому же материал арки испытывает постоянное сжатие. Поэтому все расчеты проводят по упрощенному шаблону, так как вес от кровли, монтажной обрешетки и снежной нагрузки будет одинаково распределяться по всему навесу.
  5. Трапециевидные. Угол наклона каркаса составляет от 6 до 150 градусов. При этом его высота и длина имеют пропорции 1/6. Изделие характеризуется жесткой рамой.
  6. В этом видео показано как составить чертеж фермы для навеса:

    Какой уровень нагрузки сможет выдержать сооружение - зависит от толщины профильной трубы. Чем она толще, тем крепче конструкция. Для больших конструкций лучше выбирать квадратный профиль с сечением 30-50×30-50 мм. Трубы с меньшим сечением применяют для маленького каркаса.

    Металлический профиль обладает высокой прочностью и по сравнению с цельным металлическим бруском весит намного меньше. Материал легко сгибается, это позволяет создавать арочные и куполообразные конструкции.

    Готовые фермы для навеса из металлопрофиля имеют доступную цену. Чтобы материал прослужил долго, его красят или покрывают грунтовкой, которая защитит его от коррозии.

    Поликарбонатная ферма

    Чтобы собрать ферму для навеса из поликарбоната, нужно составить подробную схему. Каждая деталь, указанная в схеме, должна иметь точные размеры. Детали со сложной конструкцией прорисовывают в дополнительном чертеже.

    Чтобы выбрать тип конструкции и количество составляющих деталей, необходимо сделать расчеты. Дополнительно изучают уровень атмосферных осадков в своем регионе. Эти данные помогут создать конструкцию необходимой прочности. Самая упрощенная разновидность фермы - дуга (труба) с круглым или квадратным сечением. Несмотря на то что это самый дешевый вариант из всех, трубы из поликарбоната не очень надежные.

    Распределение нагрузки:

    1. Вся нагрузка воздействует на опоры конструкции и направляется вниз. Из-за этого происходит ее равномерное распределение. Следовательно, опорные столбы имеют хорошее сопротивление против сжатия. Это позволяет выдерживать дополнительный вес от снежного покрова.
    2. Так как дуги менее жесткие, нагрузка распределяется неравномерно. Из-за этого под воздействием нагрузки они разгибаются. В итоге появляется сила, которая воздействует на опоры, расположенные вверху конструкции.

    Неправильный расчет фермы для навеса грозит тем, что основания столбов станут искривляться и деформироваться.

    При расчете фермы из поликарбоната учитывают высоту и длину каркаса, а также угол наклона решетки и расстояние между модулями. Пример расчета:

    1. Длина каркаса должна точно совпадать с длиной пролета (интервал, перекрывающий профиль).
    2. В зависимости от разработанного угла и характеристик очертания определяют высоту конструкции. Если сооружение треугольное, то его высота варьируется от 1/5 или ¼ части длины. Соотношение кровли прямой формы составляет 1/8 часть.
    3. Угол наклона решетки к поясу варьируется от 35 до 50 градусов. Средняя величина составляет 45 градусов.
    4. Ширина панели поможет правильно рассчитать промежуток между узлами. Они всегда идентичны. Если каркас имеет большую длину пролета (25-30 метров и более), то для него требуется строительный подъем. Его рассчитывают дополнительно. Эти расчеты помогут определить уровень нагрузки и подобрать подходящую величину профильных труб.

    К примеру, расчет для односкатного каркаса размером 4×6 м происходит следующим образом. Конструкцию создают из профиля 3×3 см. Его толщина составляет 0,12 см. Длина нижнего пояса составляет 310 см, а верхнего - 390 см. Между поясами монтируют вертикальные опоры. Высота самой большой будет составлять 60 см, остальные три равномерно укорачивают. После установки опор появляются места, которые нужно укрепить. Их оснащают раскосыми перемычками (тонкий профиль с сечением 2×2 см). В местах, где соединяются пояса, стойки не устанавливают.

    Если навес длинный (6-7 метров), то устанавливают 5 таких конструкций. Их располагают с расстоянием в 1,5 м. Каждый модуль закрепляют поперечными перемычками. В качестве перемычек применяют профиль с сечением 2×2 см.

    Его располагают на расстоянии 50 см друг от друга и закрепляют на верхнем поясе. Обшивка из поликарбоната крепится к перемычкам.

    Арочный каркас

    Из-за особого строения арочная ферма для навеса также нуждается в точных расчетах. Они необходимы для того, чтобы действующая нагрузка распределилась равномерно по всей поверхности. А это возможно только благодаря правильной и ровной форме каркаса.

    Изготовление каркаса по арочному типу длиной в 6 метров:

    1. Чтобы сооружение имело красивый внешний вид и при этом выдерживало высокие нагрузки, расстояние между арками делают в 105 см. При этом высота конструкции будет составлять 150 см.
    2. Формула длины сектора π × R × α ÷ 180 поможет рассчитать длину профиля по нижнему поясу. По чертежу: R = 410 см, α ÷ 160°. Подставив числа, получается: 3,14 × 410 × 160 ÷ 180 = 758 (см).
    3. Узлы каркаса размещают на нижнем поясе. Расстояние между ними должно быть не менее 55 см. Для установки крайних узлов требуется индивидуальный расчет.

X

Y

Z

Ширина материала козырька – позволяет определить ширину необходимого покровного материала для накрытия полукруглого козырька или навеса. С помощью функции расчета этого параметра можно подобрать оптимальные размеры козырька для максимального использования материала заводских размеров. Зная площадь козырька, Вы сможете приобрести ровно столько материала для накрытия конструкции сколько нужно и не переплачивать за излишки. Обратите внимание, что калькулятор подсчитывает параметры только кровельного материала для козырька и не рассчитывает чего и сколько нужно для изготовления каркаса и его крепления (металлопрофиль, доска, бетон, метизы).

X – ширина козырька – это расстояние между его крайними точками по фасаду. Для защиты от осадков ширину козырька необходимо выбирать немного больше размера входной двери. Если есть возможность, следует делать козырек на всю ширину крыльца с запасом по 500 мм с каждой стороны. Однако следует помнить, чем больше поверхность навеса, тем больше зимой на ней будет снега, а значит, конструкция должна быть надежной. Выбирая ширину козырька необходимо учитывать СП 20.13330.2011 «Нагрузки и воздействия».

Y – высота козырька (имеется ввиду значение высоты сегмента полукруглого козырька, а не уровень установки относительно порога дома), чем больше этот параметр, тем больше расход материала для накрытия.

Z – длина козырька – расстояние от фасада может быть разным, в зависимости от Ваших пожеланий и архитектуры дома. Минимальное значение длины для защиты от осадков составляет 700 мм. Можно ориентироваться на размеры крыльца с небольшим запасом. Обратите внимание, если длина навеса превышает 2000 мм, то под свободный край необходимо ставить дополнительные опоры.

Отметив пункт «Черно-белый чертеж» Вы получите чертеж, приближенный к требованиям ГОСТ и сможете его распечатать, не расходуя зря цветную краску или тонер.

Результаты расчета и их использование:

Ширина материала козырька – позволяет определить ширину необходимого покровного материала для накрытия полукруглого козырька или навеса. С помощью функции расчета этого параметра можно подобрать оптимальные размеры козырька для максимального использования материала заводских размеров. Рассчитав площадь козырька, Вы сможете приобрести ровно столько материала для арки навеса, сколько нужно и не переплачивать за излишки. Обратите внимание, что калькулятор подсчитывает параметры только кровельного материала для дуги навеса и не рассчитывает чего и сколько нужно для изготовления каркаса и его крепления (металлопрофиль, доска, бетон, метизы). При желании можно указать высоту равную маленькому числу, что позволит рассчитать плоский навес.

Прежде чем приступать к созданию навеса своими руками, необходимо сделать чертеж и рассчитать все элементы и узлы крепления, это позволит возвести надежное сооружение при минимальных финансовых и трудовых затратах. Чертеж и проект навеса из металлических конструкций поможет в решении целого ряда вопросов, начиная от номенклатуры и количества закупаемых стройматериалов и заканчивая экстерьером здания и общим дизайном участка.

В статье будет предоставлен список требований к сооружению, примеры расчетов наиболее распространенных конструкций и общие рекомендации по проектированию навеса для автомобиля своими руками, чертежи и схемы.

Что должен содержать проект навеса

  • Расчет прочности несущих конструкций – опор и ферм;
  • Расчет парусности крыши (сопротивление ветровой нагрузке);
  • Расчет снеговой нагрузки на кровлю;
  • Эскизы и общие чертежи навеса;
  • Чертежи основных конструкционных элементов с указаниями габаритных размеров;
  • Проектно-сметная документация, включающая расчет количества строительных материалов каждого вида и их стоимости. В зависимости от опытности разработчика могут учитываться нормы на расход (обрезки при монтаже) или просто добавляется 10-15% к метражу металлопроката.

Навес к дому – проекты, фото конструкций выполняющих различные функции

Общие требования к навесу для автомобиля

Сооружения, которые возводятся для защиты автомобиля, должны следующим отвечать эксплуатационным и техническим требованиям:

  • Размеры навеса по чертежу должны быть достаточными для свободного размещения авто;
  • Форма навеса, обеспечивающая защиту от попадания влаги, по возможности в расчетах учитывается преобладающий ветер;
  • Конструкция предохраняет от воздействия прямых солнечных лучей на протяжении всего светового дня;
  • Беспрепятственный, достаточной ширины подъезд к навесу, по возможности без поворотов на всем пути следования;
  • К машине должен быть обеспечен свободный доступ со всех сторон;
  • Достаточная простота чертежа, несущих конструкций и каркаса для навеса из профильной трубы или другого материала;
  • Гармоничное сочетание с домом и сооружениями на приусадебном участке;
  • Минимизация затрат на приобретение стройматериалов и проведение монтажных работ.

Наиболее простой для устройства односкатный навес из металлопрофиля своими руками, чертеж с основными размерами

Разновидности форм навесов и их эксплуатационные особенности и чертежи

Основной пространственной конструкцией навеса, в соответствии с чертежом, является стропильная ферма. Расчет ее формы, толщины и сечения металла, а так же чертеж размещения откосов вызывает наибольшие сложности.

Главными конструкционными элементами фермы для навеса являются верхний и нижний пояс, которые образуют пространственный контур. Материалами для сборки могут служить прокатные или сварные двутавры, уголки, швеллера или профтрубы квадратного и круглого сечения. Сборка фермы для навеса своими руками может производиться по следующим формам:

  1. Параллельные пояса. Уклон готового навеса в соответствии с чертежом не превышает 1,5%, подходят для плоских кровель с рулонным покрытием. Соотношение высоты и длинны от 1/6 до 1/8. Каркас такого типа имеет несколько преимуществ:
  • Все стержни поясов для пространственной решетки имеют одинаковую длину;
  • Минимальное количество соединительных узлов;
  • Простой расчет сопряжения конструкций.

Создание беседки – навеса из поликарбоната своими руками, чертеж, фото готового сооружения

  1. Трапециевидные (односкатные). Угол уклона по чертежу составляет от 6-15 0 . соотношение высоты и длины в центре изделия 1/6. Обладает повышенной жесткостью рамы
  2. Полигональные – используются исключительно для удлиненных пролетов на 10 м и более, их применение для небольших навесов нерационально в связи с неоправданным усложнением чертежа и самого изделия. Исключения могут составлять навесы с изогнутыми (дуговыми) фермами заводского изготовления.

Устройство консольного, полигонального навеса из металлопрофиля своими руками, чертеж

  1. Треугольные. Применяются при увеличенных снеговых нагрузках, уклон двускатного навеса составляет 22-30 0 . Основным конструктивным недостатком является сложность чертежа и выполнения острого узла в основании изделия, а так же слишком длинные стержни в центре. Соотношение высоты с шириной в небольших фермах для навеса из поликарбоната, по чертежу не превышает 1/4, 1/5.

Монтаж треугольного навеса из профнастила своими руками, чертеж конструкции с указанием основных размеров

  1. Арочные балки. Наиболее эргономичный вид фермы. Ее особенностью является возможность минимизировать изгибающие моменты в поперечных сечениях конструкции. При этом материал арки подвергается воздействиям на сжатие. То есть чертеж и расчеты фермы для навеса, расчет конструкции навеса допускается производить по упрощенной схеме, при которой нагрузка от кровельного покрытия, крепежной обрешетки и снега будет приниматься, как равномерно распределенная по всей площади.

Пример расчета навеса для автомобиля

При проектировании навеса и создании его чертежа необходимо рассчитать:

  1. Горизонтальные и вертикальные опорные реакции фермы, определить действующие напряжения в поперечных направлениях и на основании полученных данных осуществить подбор величины сечения несущего профиля;
  2. Снеговые и ветровые нагрузки на кровельное покрытие;
  3. Величину сечения внецентренно сжатой колонны.

Расчет арочной фермы

Чертеж расчета фермы из профильной трубы для навеса оптимальной – арочной формы

Для примера принимаем расстояние между опорами 6м, а высота арки 1,3 м. На перекрытие навеса действуют поперечные и продольные силы, которые формируют касательные и нормальные напряжения. Расчет сечения профильной трубы использующейся в конструкции производим по формуле:

σ пр = (σ 2 +4τ 2) 0.5 ≥ R/2, где

R – прочность стали марки С235 — 2350 кгс/см 2 ;

σ – нормальное напряжение, рассчитывающееся по формуле:

σ = N/F, где

F – искомая площадь поперечного сечения трубы.

N – сосредоточенная нагрузка на замок арки (принимаем 914,82 кгс из таблицы нагрузок строительных конструкций «Справочником проектировщика» под ред. А.А. Уманского).

τ – касательное напряжение, которое рассчитывается по формуле:

τ = QS отс /b×I, где

I – момент инерции;

b – ширина сечения (принимается равной по всей рассчитываемой высоте);

QS отс – статический момент, который определяется по формуле:

S отс = ∑у i F i .

Используя метод аппроксимации (последовательного подбора показателей из имеющегося массива данных), выбираем сечения из сортамента стройматериалов имеющихся у реализаторов металлопроката. Используем наиболее ходовой профиль – металлическую трубу квадратного сечения 30х30х3,5 мм. Следовательно, поперечное сечение равняется F = 3.5 см 2 . А момент инерции I = 3.98 см 4 . ∑у i – показатель рассчитываемой отсекаемой части (чем больше данных показателей в различных точках конструкции рассчитывается, тем точные получаемые показатели прочности всего изделия) для упрощения принимаем коэффициент 0,5 (вычисления производятся для средины арки – места наибольшего сопряжения нагрузок).

Подставляем данные в формулу:

S отс = 0,5х3,5=1,75см 3 ;

Первичная формула после подстановки будет иметь следующий вид:

σ пр = ((914.82/3.5) 2 + 4(919.1·1.854/((0.35 + 0.35)3.98) 2)0.5 = 1250.96 кг/см 2

Следовательно, выбранного сечения трубы квадратного профиля 30х30х3,5 мм из стали марки С235, вполне достаточно для устройства 6 м арочной фермы покрытой поликарбонатом, профнастилом, металочерепицей или металооприфилем.

Расчет колонн

Расчет производится согласно СНиП II-23-81 (1990). Согласно методики расчета металлических колонн, при устройстве навеса для машины своими руками, чертежи должны учитывать, что приложить сосредоточенную нагрузку точно к центру поперечного сечения фактически невозможно. Поэтому формула определения площади опоры будет иметь следующий вид:

F = N/ φR y , где

F – искомая площадь сечения;

φ – коэффициент продольного изгиба;

N – сосредоточенная нагрузка прилагаемая к центру тяжести опоры;

R у – расчетное сопротивление материала, определяется по справочникам.

φ — зависит от материала (марки стали) и гибкости конструкции – λ, определяющееся по формуле:

λ = l ef /i, где

l ef – расчетная длина колоны, зависящая от способа закрепления концов, определяется по формуле:

l ef = μl , где

l – реальная длина колонны (3м);

μ – коэффициент из СНиП II-23-81 (1990), учитывающий способ закрепления.

Коэффициент закрепления колонны согласно, чертежа навеса из профильной трубы

Подставляем данные в формулу:

F = 3000/(0,599·2050) = 2,44 см², округляем до 2,5 см².

В таблице сортамента профильных изделий ищем значение радиуса инерции больше полученного. Необходимым показателям соответствует стальная труба с поперечным сечением 70×70 мм и толщиной стенки 2 мм, которая имеет радиус инерции 2,76.

Снеговые и ветровые нагрузки на кровельное покрытие

Усредненные данные ветровой и снеговой нагрузки по регионам берутся из СНиПа «Нагрузки и воздействия». Возьмем для примера максимальное значение для Москвы и Московской области, оно составляет 23кг/м 2 . Однако это ветровая нагрузка на сооружение, которое имеет стены. В нашем случае несущими конструкциями выступают колонны, следовательно, коэффициент положительного ветрового давления на внутреннюю поверхность крыши будет составлять 0,34. При этом, показатель, учитывающий изменения ветровой нагрузки по высоте здания для навесов 3 м составляет 0,75. Подставляя данные в формулу, получим:

W m = 23·0.75·0.34 = 5.9 кг/м 2 .

Максимальная снеговая нагрузка для того же региона составляет Sg = 180 кг/м 2 , но для арки необходимо рассчитывать распределенную нагрузку по формуле:

S = S g ·μ, где

μ – значение коэффициента перехода, которое принимается отдельно для центра арки и крайних опор.

Расчет снеговой нагрузки при создании навеса из поликарбоната своими руками, чертежи направления воздействия давления в двух позициях

Значение коэффициента µ для центра арки, согласно чертежу, равно µ 1 = cos1.8·0 = 1, а для крайних опор µ 2 = 2.4sin1.4·50 = 2,255. Подставляя рассчитанные данные в формулу получаем совокупную нагрузку на кровельное покрытие:

q = 180·2.255·cos 2 50 о + 5.9 = 189.64 кг/м 2 = 1,8964 кг/см 2 .

Согласно полученных данных толщина кровельного материала вычисляется по формуле:

I тр = ql 4 /(185Ef), где

l – длина пролета;

Е – модуль упругости при изгибе (для поликарбоната он составляет 22500 кгс/см 2);

f – коэффициент прогиба при максимальной нагрузке (согласно данным производителей поликарбоната составляет 2 см);

Подставив данные в формулу, получим допустимое значение инерции:

I тр = ql 4 /(185Ef) = 1.8964·63 4 /(185·22500·2) = 3,59 см 4

При этом, из данных производителей поликарбоната показатель момента инерции для сотового поликарбоната шириной 1м и толщиной 0,8 мм составляет 1,36 см 4 , а для толщины 16 мм 9,6 см 4 . Методом корреляции определяем необходимое значение 3,41см 4 для сотового поликарбоната толщиной 12 мм.

Методика расчета справедлива для любого листового кровельного материала: профлиста, металлочерепицы, шифера и т.п. Но при этом следует учитывать крайне ограниченный сортамент указанных изделий.

Подводя итоги

Производить указанные расчеты и создавать чертеж вручную имеет смысл, если возводимый навес должен соответствовать уникальным условиям эксплуатации и оригинальной планировке. Для проверки элементов типовых металлоконструкций на соответствие и создания чертежей конструкций существует множество программ: Astra WMs(p), SCAD Offise 11, ArkaW, GeomW и многие другие или онлайн калькуляторы. Правила работы с таким ПО достаточно подробно описывают различные видео инструкции, к примеру, расчет и чертежи арки в SCAD:

Просмотров