Что такое кабельно воздушная линия электропередач. Воздушные линии электропередачи ЛЭП: конструкция, разновидности, параметры

Как можно обозначит значение линий электропередач? Есть ли точное определение проводам, по которым передается электроэнергия? В межотраслевых правилах технической эксплуатации электроустановок потребителей есть точное определение. Итак, ЛЭП – это, во-первых, электрическая линия. Во-вторых, это участки проводов, которые выходят за пределы подстанций и электрических станций. В-третьих, основное назначение линий электропередач – это передача электрического тока на расстоянии.

По тем же правилам МПТЭЭП производится разделение ЛЭП на воздушные и кабельные. Но необходимо отметить, что по линиям электропередач производится также передача высокочастотных сигналов, которые используются для передачи телеметрических данных, для диспетчерского управления различными отраслями, для сигналов противоаварийной автоматики и релейной защиты. Как утверждает статистика, 60000 высокочастотных каналов сегодня проходят по линиям электропередач. Скажем прямо, показатель значительный.

Воздушные ЛЭП

Воздушные линии электропередач, их обычно обозначают буквами «ВЛ» – это устройства, которые располагаются на открытом воздухе. То есть, сами провода прокладываются по воздуху и закрепляются на специальной арматуре (кронштейны, изоляторы). При этом их установка может проводиться и по столбам, и по мостам, и по путепроводам. Не обязательно считать «ВЛ» те линии, которые проложены только по высоковольтным столбам.

Что входит в состав воздушных линий электропередач:

  • Основное – это провода.
  • Траверсы, с помощью которых создаются условия невозможности соприкосновения проводов с другими элементами опор.
  • Изоляторы.
  • Сами опоры.
  • Контур заземления.
  • Молниеотводчики.
  • Разрядники.

То есть, линия электропередач – это не просто провода и опоры, как видите, это достаточно внушительный список различных элементов, каждый из которых несет свои определенные нагрузки. Сюда же можно добавить оптоволоконные кабели, и вспомогательное к ним оборудование. Конечно, если по опорам ЛЭП проводятся высокочастотные каналы связи.

Строительство ЛЭП, а также ее проектирование, плюс конструктивные особенности опор определяются правилами устройства электроустановок, то есть ПУЭ, а также различными строительными правилами и нормами, то есть СНиП. Вообще, строительство линий электропередач – дело непростое и очень ответственное. Поэтому их возведением занимаются специализированные организации и компании, где в штате есть высококвалифицированные специалисты.

Классификация воздушных линий электропередач

Сами воздушные высоковольтные линии электропередач делятся на несколько классов.

По роду тока:

  • Переменного,
  • Постоянного.

В основе своей воздушные ВЛ служат для передачи переменного тока. Редко можно встретить второй вариант. Обычно он используется для питания сети контактной или связной для обеспечения связью несколько энергосистем, есть и другие виды.

По напряжению воздушные ЛЭП делятся по номиналу этого показателя. Для информации перечислим их:

  • для переменного тока: 0,4; 6; 10; 35; 110; 150; 220; 330; 400; 500; 750; 1150 киловольт (кВ);
  • для постоянного используется всего один вид напряжение – 400 кВ.

При этом линии электропередач напряжением до 1,0 кВ считаются низшего класса, от 1,0 до 35 кВ – среднего, от 110 до 220 кВ – высокого, от 330 до 500 кВ – сверхвысокого, выше 750 кВ ультравысокого. Необходимо отметить, что все эти группы отличаются друг от друга лишь требованиями к расчетным условиям и конструктивным особенностям. Во всем остальном – это обычные высоковольтные линии электропередач.


Напряжение ЛЭП соответствует их назначению.

  • Высоковольтная линия напряжением свыше 500 кВ считаются сверхдальними, они предназначаются для соединения отдельных энергосистем.
  • Высоковольтная линия напряжением 220, 330 кВ считаются магистральными. Их основное назначение – соединить между собой мощные электростанции, отдельные энергосистемы, а также электростанции внутри данных систем.
  • Воздушные ЛЭП напряжением 35-150 кВ устанавливаются между потребителями (большими предприятиями или населенными пунктами) и распределительными пунктами.
  • ВЛ до 20 кВ используются в качестве линий электропередач, которые непосредственно подводят электрический ток к потребителю.

Классификация ЛЭП по нейтрале

  • Трехфазные сети, в которых нейтраль не заземлена. Обычно такая схема используется в сетях напряжением 3-35 кВ, где протекают малые токи.
  • Трехфазные сети, в которых нейтраль заземлена через индуктивность. Это так называемый резонансно-заземленный тип. В таких ВЛ используется напряжение 3-35 кВ, в которых протекают токи большой величины.
  • Трехфазные сети, в которых нейтральная шина полностью заземлена (эффективно-заземленная). Этот режим работы нейтрали используется в ВЛ со средним и сверхвысоким напряжением. Обратите внимание, что в таких сетях необходимо использовать трансформаторы, а не автотрансформаторы, в которых нейтраль заземлена наглухо.
  • И, конечно, сети с глухозаземленной нейтралью. В таком режиме работают ВЛ напряжением ниже 1,0 кВ и выше 220 кВ.

К сожалению, существует и такое разделения линий электропередач, где учитывается эксплуатационное состояние всех элементов ЛЭП. Это ЛЭП в нормальном состоянии, где провода, опоры и другие составляющие находятся в приличном состоянии. В основном упор делается на качество проводов и тросов, они не должны быть оборваны. Аварийное состояние, где качество проводов и тросов оставляет желать лучшего. И монтажное состояние, когда производится ремонт или замена проводов, изоляторов, кронштейнов и других компонентов ЛЭП.


Элементы воздушной ЛЭП

Между специалистами всегда происходят разговоры, в которых применяются специальные термины, касающиеся линий электропередач. Непосвященному в тонкости сленга понять этот разговор достаточно сложно. Поэтому предлагаем расшифровку этих терминов.

  • Трасса – это ось прокладки ЛЭП, которая проходит по поверхности земли.
  • ПК – пикеты. По сути, это отрезки трассы ЛЭП. Их длина зависит от рельефа местности и от номинального напряжения трассы. Нулевой пикет – это начало трассы.
  • Строительство опоры обозначается центровым знаком. Это центр установки опоры.
  • Пикетаж – по сути, это простая установка пикетов.
  • Пролет – это расстояние между опорами, а точнее, между их центрами.
  • Стрела провеса – это дельта между самой низшей точкой провеса провода и строго натянутой линией между опорами.
  • Габарит провода – это опять-таки расстояние между самой низшей точкой провеса и самой высшей точкой пролегаемых под проводами инженерных сооружений.
  • Петля или шлейф. Это часть провода, которая соединяет на анкерной опоре провода соседних пролетов.

Кабельные ЛЭП

Итак, переходим к рассмотрению такого понятия, как кабельные линии электропередач. Начнем с того, что это не голые провода, которые используются в воздушных линиях электропередач, это закрытые в изоляцию кабели. Обычно кабельные ЛЭП представляют собой несколько линий, установленные рядом друг с другом в параллельном направлении. Длины кабеля для этого бывает недостаточно, поэтому между участками устанавливаются соединительные муфты. Кстати, нередко можно встретить кабельные линии электропередач с маслонаполнением, поэтому такие сети часто укомплектовываются специальной малонаполнительной аппаратурой и системой сигнализации, которая реагирует на давление масла внутри кабеля.

Если говорить о классификации кабельных линий, то они идентичны классификации линий воздушных. Отличительные особенности есть, но их не так много. В основном эти две категории отличаются между собой способом прокладки, а также конструктивными особенностями. К примеру, по типу прокладки кабельные ЛЭП делятся на подземные, подводные и по сооружениям.


Две первые позиции понятны, а что относится к позиции «по сооружениям»?

  • Кабельные туннели. Это специальные закрытые коридоры, в которых производится прокладка кабеля по установленным опорным конструкциям. В таких туннелях можно свободно ходить, проводя монтаж, ремонт и обслуживание электролинии.
  • Кабельные каналы. Чаще всего они являются заглубленными или частично заглубленными каналами. Их прокладка может производиться в земле, под напольным основанием, под перекрытиями. Это небольшие каналы, в которых ходить невозможно. Чтобы проверить или установить кабель, придется демонтировать перекрытие.
  • Кабельная шахта. Это вертикальный коридор с прямоугольным сечением. Шахта может быть проходной, то есть, с возможностью помещаться в нее человеку, для чего она снабжается лестницей. Или непроходной. В данном случае добраться до кабельной линии можно, только сняв одну из стенок сооружения.
  • Кабельный этаж. Это техническое пространство, обычно высотою 1,8 м, оснащенное снизу и сверху плитами перекрытия.
  • Укладывать кабельные линии электропередач можно и в зазор между плитами перекрытия и полом помещения.
  • Блок для кабеля – это сложное сооружение, состоящее из труб прокладки и нескольких колодцев.
  • Камера – это подземное сооружение, закрытое сверху железобетонной или плитой. В такой камере производится соединение муфтами участков кабельной ЛЭП.
  • Эстакада – это горизонтальное или наклонное сооружение открытого типа. Она может быть надземной или наземной, проходной или непроходной.
  • Галерея – это практически то же самое, что и эстакада, только закрытого типа.

И последняя классификация в кабельных ЛЭП – это тип изоляции. В принципе, основных видов два: твердая изоляция и жидкостная. К первой относятся изоляционные оплетки из полимеров (поливинилхлорид, сшитый полиэтилен, этилен-пропиленовая резина), а также другие виды, к примеру, промасленная бумага, резино-бумажная оплетка. К жидкостным изоляторам относится нефтяное масло. Есть и другие виды изоляции, к примеру, специальными газами или другими видами твердых материалов. Но их используют сегодня очень редко.

Заключение по теме

Разнообразие линий электропередач сводится к классификации двух основных видов: воздушных и кабельных. Оба варианта сегодня используются повсеместно, поэтому не стоит отделять один от другого и давать предпочтение одному перед другим. Конечно, строительство воздушных линий сопряжено с большими капиталовложениями, потому что прокладка трассы – это установка опор в основном металлических, которые имеют достаточно сложную конструкцию. При этом учитывается, какая сеть, под каким напряжением будет прокладываться.

Усиленно развивающаяся промышленность требует введения современных мощностей для образования и передачи электроэнергии.

Кабельные линии интегрируются в кабельную систему коммуникаций, являющейся фундаментом большой энергетической системы.

Воздушные и кабельные линии электропередачи применяются в современном строительстве. Положительной особенностью кабельных линий, является возможность их проведения в малодоступных местах. В последнее время, воздушные линии смело заменяют кабельными, по причине ограничения земельных участков, – необходимых для установки фиксирующих опор.

Техническая характеристика энергокабелей

В согласии с ГОСТ, кабели производят силового и контрольного назначения. Кабельные силовые линии предназначены передавать, распределять электроэнергию в электроустановках. Контрольные – используют для организации цепей контроля, передачи сигналов, ДУ и автоматики. Линии электрической передачи (ЛЭП) от 6 до 10 кВ и более, выполняются силовым кабелем.

Внутри СК может находиться 1, 2, 3 или 4 изолированные жилы, герметично закупоренных защитной пленкой (Рис.1).

Рис.1 трехжильный СК «ААБ»: 1 – сегментные жилы; 2,3,4 – изолирующий материал; 5-герметическая оболочка; 6,7,8 – завершающий защитный покров.

Токоведущие жилы бывают алюминиевого и медного происхождения, в конструкции СК, обычно, используют алюминиевый материал. Жилы могут быть многопроволочные и однопроволочные (при маркировке добавляется значение «ож»).

Изоляция. При изготовлении кабеля проводят изоляцию жил, она может выполняться специальным резиновым, бумажным или пластмассовым материалом. Для силовых конструкций, чаще всего, применяют изоляцию из пластмассового материала и, пропитанной специальным составом, бумаги.

У кабелей с напряжением до 10 кВ, изолируется по отдельности каждая жилка (бумажная изоляция). Затем осуществляют поясную изоляцию – все жилы вместе изолируют от оболочки. Зазоры между жилами наполняются бумажными жгутами.

Упомянутая техника изоляции делает кабель меньшим в диаметре, наделяет его нужной электропрочностью.

Защитная оболочка . Применяют в качестве герметизирующего материала, предотвращая повреждение кабельной конструкции в случае воздействия внешних факторов.

Оболочка может быть выполнена:

  • часто из алюминия;
  • свинца (для кабельной линии электропередач в воде);
  • резины (полихлоропреновый каучук);
  • пластика (материал поливинилхлорид).

Защитный слой . Выполняет свои функции, относительно кабельной оболочки. Служит преградой от внешних воздействий, защищает внутреннюю структуру от механических повреждений и образования коррозии. В зависимости от предназначения кабеля, его защитный покров может состоять из подушки, брони и внешнего покрова.

Бронированные конструкции применяют в создании кабельных линий электропередач, используемых для прокладывания в воде и земле. Их защитный слой, с внешней стороны, снабжается дополнительно предохраняющим от химических воздействий пластом.

Правила маркирования

Маркирование силовых кабелей составляют из символов, обозначающих материал, применяемый для изготовления: жил, изоляции, оболочки и защитного слоя. Наименование очень важно при выборе кабелей для прокладки воздушных и кабельных линий электропередач.

Использование медных жил не имеет символики, алюминиевые – в начале названия, отмечают буквой «А».

Обозначения также не имеет бумажная изоляция, все остальные изолирующие материалы:

  • П – полиэтиленовая;
  • В – поливинилхлоридная;
  • Р – резиновая изоляция.

Следующий символ соответствует материалу, из которого выполнена защитная оболочка:

  • А – алюминий;
  • В – поливинилхлорид;
  • С – свинец;
  • П – полиэтилен;
  • Р – резина.

Завершается маркировка буквами указывающими вид защитного слоя:

  • Г – отсутствует броня и внешнее преграждающее покрытие;
  • (Г) – гофрированный алюминиевый слой;
  • Т – усиленный свинцовый слой;
  • Шв – гладкий алюминиевый слой в поливинилхлоридовом шланге.

Стоящая в конце маркирования буква «В», – кабель с обедненной пропиткой. Кабельные линии электропередач с обедненной пропитанной изоляцией и свинцовой оболочкой, прокладывают на трасах с перепадом высот до 100 м. Ограничения исключаются при использовании в конструкции алюминиевой оболочки.

Буква «Ц» – говорит о применении бумажной изоляции пропитанной нестекающей массой изготовленной на основе церезина. Кабель данного типа используют для организации кабельных линий электропередач на крутонаклонных трассах. Без ограничения в перепадах высот. После буквенной маркировки ставятся цифры, обозначающие сечение токопроводящих жил.

Монтаж кабельных линий

Монтаж высоковольтных линий электропередач может осуществляться как внутри, так и снаружи сооружений.

Воздушные и кабельные линии электропередач имеют между собой значительные отличия. ВЛ – используют для передачи энергии или ее распределения по проводам проходящим на открытом воздухе. Воздушные кабельные линии крепятся к опорам с помощью кронштейнов и арматуры.

Кабельные линии электропередач прокладывают:

  • В земляных траншеях. Чтобы исключить повреждения новой кабельной линии при ее прокладывании в траншеи, дно рва засыпают слоем песка или провеянной землей. Таким образом, делают мягкую подушку толщиной 10 см. После прокладки подземной кабельной линии ее засыпают мягким земляным слоем толщиной 10 см. Поверх него кладут бетонные плиты, необходимые для исключения механических повреждений, ров засыпают и утрамбовывают землей.

Подземные кабельные линии помимо достоинств, имеют большой недостаток. При повреждении кабельной системы придется вскрывать траншею, перекрывать проезжую или пешеходную зону. Несмотря на это, прокладывание кабельных линий электропередач в траншеях, часто используется на внутренних территориях жилмассивов.

  • В асбестоцементных трубах . Новые кабельные линии могут прокладываться под проезжей и пешеходной частью, с использованием асбестовых труб.

В земляные канавы укладывают от 6 до 10 труб, на расстоянии 25-75 метров строят колодцы, посредством которых монтируют кабельные линии электропередач.

Основными достоинствами данного метода прокладки является защита кабельной линии электропередач от повреждений. Оперативность и простота замены участка поврежденной кабельной системы, без необходимости вскрытия пешеходных зон. Но и стоимость такой конструкции достаточно высока.

  • В тоннелях и подземных коллекторах . Данный вид проекта кабельной линии был разработан в связи с ограниченным объемом требуемых мощностей, промышленными предприятиями современных городов.

Подобный метод прокладки дает возможность оперативно осуществлять поиск повреждения, своевременно выполнять ремонтные работы. Часть поврежденной кабельной линии легко заменяется новой, после чего на краях вставки монтируют муфты. Недостатком является плохое охлаждение кабельной линии электропередач, что необходимо учесть при выборе сечения.

Кабельные линии связи прокладывают в коллекторах. Если в проекте кабельная линия связи пересекается с другой кабельной системой, то она должна располагаться на уровень выше силового кабеля. А высоковольтные кабельные линии должны проходить на уровень ниже, под кабелем меньшего напряжения.

Паспорт для существующей кабельной линии

Кабельная линия электропередач должна иметь техпаспорт, для записей технического состояния системы. В паспорт кабельной линии образец можно скачать в интернете, заносятся инженером, ответственным за выполнение эксплуатационных работ, данные о проведенных испытаниях. Ведется запись о ремонтных работах, о появлении механических и коррозийных повреждений.

На проект кабельной линии заводится архив, в которой собирается вся последующая техническая документация. Помимо паспорта в нее входят: протоколы, акты, отметки о повреждениях, расчет потерь в кабеле, данные о нагрузках и перегрузках на линии.

Безопасность работ в охранной зоне ЛЭП

Охранная зона для воздушных ЛЭП, согласно СНИП и ПУЭ, представляет собой пространство, идущее вдоль проложенных линий. Вертикальные параллельные плоскости, расположенные с обеих сторон линии, ограничивают пространство.

Для кабельных линий, проложенных под землей, охранное пространство создается на участке земли, ограничивается параллельными вертикальными плоскостями с обеих сторон линии (расстояние один метр от крайних кабелей).

Линия электропередач

Линии электропередачи

Линия электропередачи (ЛЭП) - один из компонентов электрической сети , система энергетического оборудования, предназначенная для передачи электроэнергии .

Согласно МПТЭЭП (Межотраслевые правила технической эксплуатации электроустановок потребителей) Линия электропередачи - Электрическая линия, выходящая за пределы электростанции или подстанции и предназначенная для передачи электрической энергии.

Различают воздушные и кабельные линии электропередачи .

По ЛЭП также передают информацию при помощи высокочастотных сигналов, по оценкам в России используется порядка 60 тыс. ВЧ-каналов по ЛЭП. Используются они для диспетчерского управления, передачи телеметрических данных, сигналов релейной защиты и противоаварийной автоматики.

Воздушные линии электропередачи

Воздушная линия электропередачи (ВЛ) - устройство, предназначенное для передачи или распределения электрической энергии по проводам, находящимся на открытом воздухе и прикреплённым с помощью траверс (кронштейнов), изоляторов и арматуры к опорам или другим сооружениям (мостам , путепроводам).

Состав ВЛ

  • Секционирующие устройства
  • Волоконно-оптические линии связи (в виде отдельных самонесущих кабелей, либо встроенные в грозозащитный трос, силовой провод)
  • Вспомогательное оборудование для нужд эксплуатации (аппаратура высокочастотной связи, ёмкостного отбора мощности и др.)

Документы, регулирующие ВЛ

Классификация ВЛ

По роду тока

  • ВЛ переменного тока
  • ВЛ постоянного тока

В основном, ВЛ служат для передачи переменного тока и лишь в отдельных случаях (напр., для связи энергосистем, питания контактной сети и др.) используют линии постоянного тока.

Для ВЛ переменного тока принята следующая шкала классов напряжений: переменное - 0.4, 6, 10, (20), 35, 110, 150, 220, 330, 400 (Выборгская ПС - Финляндия), 500 , 750 и 1150 кВ; постоянное - 400 кВ.

По назначению

  • сверхдальние ВЛ напряжением 500 кВ и выше (предназначены для связи отдельных энергосистем)
  • магистральные ВЛ напряжением 220 и 330 кВ (предназначены для передачи энергии от мощных электростанций , а также для связи энергосистем и объединения электростанций внутри энергосистем - к примеру, соединяют электростанции с распределительными пунктами)
  • распределительные ВЛ напряжением 35, 110 и 150 кВ (предназначены для электроснабжения предприятий и населённых пунктов крупных районов - соединяют распределительные пункты с потребителями)
  • ВЛ 20 кВ и ниже, подводящие электроэнергию к потребителям

По напряжению

  • ВЛ до 1 кВ (ВЛ низшего класса напряжений)
  • ВЛ выше 1 кВ
    • ВЛ 1-35 кВ (ВЛ среднего класса напряжений)
    • ВЛ 110-220 кВ (ВЛ высокого класса напряжений)
    • ВЛ 330-500 кВ (ВЛ сверхвысокого класса напряжений)
    • ВЛ 750 кВ и выше (ВЛ ультравысокого класса напряжений)

Это группы существенно различаются в основном требованиями в части расчётных условий и конструкций.

По режиму работы нейтралей в электроустановках

  • Трехфазные сети с незаземленными (изолированными) нейтралями (нейтраль не присоединена к заземляющему устройству или присоединена к нему через аппараты с большим сопротивлением). В России такой режим нейтрали используется в сетях напряжением 3-35кВ с малыми токами однофазных замыканий на землю.
  • Трехфазные сети с резонансно-заземлёнными (компенсированными) нейтралями (нейтральная шина присоединена к заземлению через индуктивность). В России используется в сетях напряжением 3-35кВ с большими токами однофазных замыканий на землю.
  • Трехфазные сети с эффективно-заземленными нейтралями (сети высокого и сверхвысокого напряжения, нейтрали которых соединены с землей непосредственно или через небольшое активное сопротивление). В России это сети напряжением 110, 150 и частично 220кВ, т.е. сети в которых применяются трансформаторы, а не автотрансформаторы, требующие обязательного глухого заземления нейтрали по режиму работы.
  • Сети с глухозаземлённой нейтралью (нейтраль трансформатора или генератора присоединяется к заземляющему устройству непосредственно или через малое сопротивление). К ним относятся сети напряжением менее 1кВ, а так же сети напряжением 220кВ и выше.

По режиму работы в зависимости от механического состояния

  • ВЛ нормального режима работы (провода и тросы не оборваны)
  • ВЛ аварийного режима работы (при полном или частичном обрыве проводов и тросов)
  • ВЛ монтажного режима работы (во время монтажа опор, проводов и тросов)

Основные элементы ВЛ

  • Трасса - положение оси ВЛ на земной поверхности.
  • Пикеты (ПК) - отрезки, на которые разбита трасса, длина ПК зависит от номинального напряжения ВЛ и типа местности.
  • Нулевой пикетный знак обозначает начало трассы.
  • Центровой знак обозначает центр расположения опоры в натуре на трассе строящейся ВЛ.
  • Производственный пикетаж - установка пикетных и центровых знаков на трассе в соответствие с ведомостью расстановки опор.
  • Фундамент опоры - конструкция, заделанная в грунт или опирающаяся на него и передающая ему нагрузки от опоры, изоляторов, проводов (тросов) и от внешних воздействий (гололёда, ветра).
  • Основание фундамента - грунт нижней части котлована, воспринимающий нагрузку.
  • Пролёт (длина пролёта) - расстояние между центрами двух опор, на которых подвешены провода. Различают промежуточный (между двумя соседними промежуточными опорами) и анкерный (между анкерными опорами) пролёты . Переходный пролёт - пролёт, пересекающий какое-либо сооружение или естественное препятствие (реку, овраг).
  • Угол поворота линии - угол α между направлениями трассы ВЛ в смежных пролётах (до и после поворота).
  • Стрела провеса - вертикальное расстояние между низшей точкой провода в пролёте и прямой, соединяющей точки его крепления на опорах.
  • Габарит провода - вертикальное расстояние от низшей точки провода в пролёте до пересекаемых инженерных сооружений, поверхности земли или воды.
  • Шлейф (петля ) - отрезок провода, соединяющий на анкерной опоре натянутые провода соседних анкерных пролётов.

Кабельные линии электропередачи

Кабельная линия электропередачи (КЛ) -называется линия для передачи электроэнергии или отдельных импульсов ее, состоящая из одного или нескольких параллельных кабелей с соединительными, стопорными и концевыми муфтами (заделками) и крепежными деталями, а для маслонаполненных линий, кроме того, с подпитывающими аппаратами и системой сигнализации давления масла.

По классификации кабельные линии аналогичны воздушным линиям

Кабельные линии делят по условиям прохождения

  • Подземные
  • По сооружениям
  • Подводные

к кабельным сооружениям относятся

  • Кабельный туннель - закрытое сооружение (коридор) с расположенными в нем опорными конструкциями для размещения на них кабелей и кабельных муфт, со свободным проходом по всей длине, позволяющим производить прокладку кабелей, ремонты и осмотры кабельных линий.
  • Кабельный канал - закрытое и заглубленное (частично или полностью) в грунт, пол, перекрытие и т. п. непроходное сооружение, предназначенное для размещения в нем кабелей, укладку, осмотр и ремонт которых возможно производить лишь при снятом перекрытии.
  • Кабельная шахта - вертикальное кабельное сооружение (как правило, прямоугольного сечения), у которого высота в несколько раз больше стороны сечения, снабженное скобами или лестницей для передвижения вдоль него людей (проходные шахты) или съемной полностью или частично стенкой (непроходные шахты).
  • Кабельный этаж - часть здания, ограниченная полом и перекрытием или покрытием, с расстоянием между полом и выступающими частями перекрытия или покрытия не менее 1,8 м.
  • Двойной пол - полость, ограниченная стенами помещения, междуэтажным перекрытием и полом помещения со съемными плитами (на всей или части площади).
  • Кабельный блок - кабельное сооружение с трубами (каналами) для прокладки в них кабелей с относящимися к нему колодцами.
  • Кабельная камера - подземное кабельное сооружение, закрываемое глухой съемной бетонной плитой, предназначенное для укладки кабельных муфт или для протяжки кабелей в блоки. Камера, имеющая люк для входа в нее, называется кабельным колодцем.
  • Кабельная эстакада - надземное или наземное открытое горизонтальное или наклонное протяженное кабельное сооружение. Кабельная эстакада может быть проходной или непроходной.
  • Кабельная галерея - надземное или наземное закрытое полностью или частично (например, без боковых стен) горизонтальное или наклонное протяженное проходное кабельное сооружение.

По типу изоляции

Изоляция кабельных линий делится на два основных типа:

  • жидкостная
    • кабельным нефтяным маслом
  • твёрдая
    • бумажно-маслянная
    • поливинилхлоридная (ПВХ)
    • резино-бумажная (RIP)
    • сшитый полиэтилен (XLPE)
    • этилен-пропиленовая резина (EPR)

Здесь не указана изоляция газообразными веществами и некоторые виды жидкостной и твёрдой изоляции из-за их относительно редкого применения в момент написания статьи.

Потери в ЛЭП

Потери электроэнергии в проводах зависят от силы тока , поэтому при передаче ее на дальние расстояния, напряжение многократно повышают (во столько же раз уменьшая силу тока) с помощью трансформатора , что при передаче той же мощности позволяет значительно снизить потери. Однако с ростом напряжения начинают происходить различного рода разрядные явления.

Другой важной величиной, влияющей на экономичность ЛЭП, является cos(f) - величина, характеризующая отношение активной и реактивной мощности.

В воздушных линиях сверхвысокого напряжения присутствуют потери активной мощности на корону (коронный разряд). Эти потери зависят во многом от погодных условий (в сухую погоду потери меньше, соответственно в дождь, изморось, снег эти потери возрастают) и расщепления провода в фазах линии. Потери на корону для линий различных напряжений имеют свои значения (для линии ВЛ 500кВ среднегодовые потери на корону составляют около ΔР=9,0 -11,0 кВт/км). Так как коронный разряд зависит от напряжённости на поверхности провода, то для уменьшения этой напряжённости в воздушных линиях свервысокого напряжения применяют расщепление фаз. То есть в место одного провода применяют от трёх и более проводов в фазе. Распологаются эти провода на равном расстоянии друг от друга. Получается эквивалентный радиус расщеплённой фазы, этим уменьшается напряжённость на отдельном проводе, что в свою очередь уменьшает потери на корону.

Литература

  • Электромонтажные работы. В 11 кн. Кн. 8. Ч. 1. Воздушные линии электропередачи: Учеб. пособие для ПТУ. / Магидин Ф. А.; Под ред. А. Н. Трифонова. - М.: Высшая школа, 1991. - 208 с ISBN 5-06-001074-0
  • Рожкова Л. Д., Козулин В. С. Электрооборудование станций и подстанций: Учебник для техникумов. - 3-е изд., перераб. и доп. - М.: Энергоатомиздат, 1987. - 648 с.: ил. ББК 31.277.1 Р63
  • Проектирование электрической части станций и подстанций: Учеб. пособие / Петрова С.С.; Под ред. С.А. Мартынова. - Л.: ЛПИ им. М.И. Калашникова, 1980. - 76 с. УДК 621.311.2(0.75.8)

Электрические сети предназначены для передачи и распределения электроэнергии. Они состоят из совокупности подстанций и линий различных напряжений. При электростанциях строят повышающие трансформаторные подстанции и по линиям электропередачи высокого напряжения передают электроэнергию на большие расстояния. В местах потребления сооружают понижающие трансформаторные подстанции.

Основу электрической сети составляют обычно подземные или воздушные линии электропередачи высокого напряжения. Линии, идущие от трансформаторной подстанции до вводно-распределительных устройств и от них до силовых распределительных пунктов и до групповых щитков, называют питающей сетью. Питающую сеть, как правило, составляют подземные кабельные линии низкого напряжения.

По принципу построения сети разделяются на разомкнутые и замкнутые. В разомкнутую сеть входят линии, идущие к электроприемникам или их группам и получающие питание с одной стороны. Разомкнутая сеть обладает некоторыми недостатками, заключающимися в том, что при аварии в любой точке сети питание всех потребителей за аварийным участком прекращается.

Замкнутая сеть может иметь один, два и более источников питания. Несмотря на ряд преимуществ, замкнутые сети пока не получили большого распространения. По месту прокладки сети бывают наружные и внутренние.
Каждому напряжению соответствуют определенные способы выполнения электропроводки. Это объясняется тем, что чем напряжение выше, тем труднее изолировать провода. Например, в квартирах, где напряжение 220 В, проводку выполняют проводами в резиновой или в пластмассовой изоляции. Эти провода просты по устройству и дешевы.
Несравненно сложнее устроен подземный кабель, рассчитанный на несколько киловольт и проложенный под землей между трансформаторами. Кроме повышенных требований к изоляции, он еще должен иметь повышенную механическую прочность и стойкость к коррозии.

Для непосредственного электроснабжения потребителей используются:

  • воздушные или кабельные ЛЭП напряжением 6 (10) кВ для питания подстанций и высоковольтных потребителей;
  • кабельные ЛЭП напряжением 380/220 В для питания непосредственно низковольтных электроприемников.

Для передачи на расстояние напряжения в десятки и сотни киловольт создаются воздушные линии электропередач. Провода высоко поднимаются над землей, в качестве изоляции используется воздух. Расстояния между проводами рассчитываются в зависимости от напряжения, которое планируется передавать. Увеличиваются размеры и усложняются конструкции с ростом рабочего напряжения.

Воздушной линией электропередачи называют устройство для передачи или распределения электроэнергии по проводам, находящимся на открытом воздухе и прикрепленным при помоши траверс (кронштейнов), изоляторов и арматуры к опорам или инженерным сооружениям, В соответствии с «Правилами устройства электроустановок» по напряжению воздушные линии делятся на две группы: напряжением до 1000 В и напряжением свыше 1000 В. Для каждой группы линий установлены технические требования их устройства.

Линии электропередач до 1000 В

Воздушные ЛЭП 10 (6) кВ находят наиболее широкое применение в сельской местности и в небольших городах. Это объясняется их меньшей стоимостью по сравнению с кабельными линиями , меньшей плотностью застройки и т.д.
Для проводки воздушных линий и сетей используют различные провода и тросы. Основное требование, предъявляемое к материалу проводов воздушных линий электропередачи, - малое электрическое сопротивление . Кроме того, материал, применяемый для изготовления проводов, должен обладать достаточной механической прочностью, быть устойчивым к действию влаги и находящихся в воздухе химических веществ.

В настоящее время чаще всего используют провода из алюминия и стали, что позволяет экономить дефицитные цветные металлы (медь) и снижать стоимость проводов. Медные провода применяют на специальных линиях. Алюминий обладает малой механической прочностью, что приводит к увеличению стрелы провеса и, соответственно, к увеличению высоты опор или уменьшению длины пролета. При передаче небольших мощностей электроэнергии на короткие расстояния применение находят стальные провода.

Для изоляции проводов и крепления их к опорам линий электропередач служат линейные изоляторы, которые наряду с электрической должны также обладать и достаточной механической прочностью. В зависимости от способа крепления на опоре различают изоляторы штыревые (их крепят на крюках или штырях) и подвесные (их собирают в гирлянду и крепят к опоре специальной арматурой).

Штыревые изоляторы применяют на линиях электропередач напряжением до 35 кВ. Маркируют их буквами, обозначающими конструкцию и назначение изолятора, и числами, указывающими рабочее напряжение. На воздушных линиях 400 В используют штыревые изоляторы ТФ, ШС, ШФ. Буквы в условных обозначениях изоляторов обозначают следующее:

Т - телеграфный;
Ф - фарфоровый;
С - стеклянный;
ШС - штыревой стеклянный;
ШФ - штыревой фарфоровый.

Штыревые изоляторы применяют для подвешивания сравнительно легких проводов, при этом в зависимости от условий трассы используются различные типы крепления проводов. Провод на промежуточных опорах укрепляют обычно на головке штыревых изоляторов, а на угловых и анкерных опорах - на шейке изоляторов. На угловых опорах провод располагают с наружной стороны изолятора по отношению к углу поворота линии.
Подвесные изоляторы применяют на воздушных линиях 35 кВ и выше. Они состоят из фарфоровой или стеклянной тарелки (изолирующая деталь), шапки из ковкого чугуна и стержня. Конструкция гнезда шапки и головки стержня обеспечивает сферическое шарнирное соединение изоляторов при комплектовании гирлянд. Гирлянды собирают и подвешивают к опорам и тем самым обеспечивают необходимую изоляцию проводов. Количество изоляторов в гирлянде зависит от напряжения линии и типа изоляторов.

Материалом для вязки алюминиевого провода к изолятору служит алюминиевая проволока, а для стальных проводов - мягкая стальная. При вязке проводов выполняют обычно одинарное крепление, двойное же крепление применяют в населенной местности и при повышенных нагрузках. Перед вязкой заготовляют проволоку нужной длины (не менее 300 мм).

Головную вязку выполняют двумя вязальными проволоками разной длины. Эти проволоки закрепляют на шейке изолятора, скручивая между собой. Концами более короткой проволоки обвивают провод и плотно притягивают четыре-пять раз вокруг провода. Концы другой проволоки, более длинные, накладывают на головку изолятора накрест через провод четыре-пять раз.

Для выполнения боковой вязки берут одну проволоку, кладут ее на шейку изолятора и оборачивают вокруг шейки и провода так, чтобы один ее конец прошел над проводом и загнулся сверху вниз, а второй - снизу вверх. Оба конца проволоки выводят вперед и снова оборачивают их вокруг шейки изолятора с проводом, поменяв местами относительно провода.

После этого провод плотно притягивают к шейке изолятора и обматывают концы вязальной проволоки вокруг провода с противоположных сторон изолятора шесть-восемь раз. Во избежание повреждения алюминиевых проводов место вязки иногда обматывают алюминиевой лентой. Изгибать провод на изоляторе сильным натяжением вязальной проволоки не разрешается.

Вязку проводов выполняют вручную, используя монтерские пассатижи. Особое внимание обращают при этом на плотность прилегания вязальной проволоки к проводу и на положение концов вязальной проволоки (они не должны торчать). Штыревые изоляторы крепят к опорам на стальных крюках или штырях. Крюки ввертывают непосредственно в деревянные опоры, а штыри устанавливают на металлических, железобетонных или деревянных траверсах. Для крепления изоляторов на крюках и штырях используют переходные полиэтиленовые колпачки. Разогретый колпачок плотно надвигают на штырь до упора, после этого на него навинчивают изолятор.

Провода подвешиваются на железобетонных или деревянных опорах при помощи подвесных или штыревых изоляторов.

Наименьшая допустимая высота расположения нижнего крюка на опоре (от уровня земли) составляет:

  • в ЛЭП напряжением до 1000 В для промежуточных опор от 7 м, для переходных опор - 8,5 м;
  • в ЛЭП напряжением более 1000 В высота расположения нижнего крюка для промежуточных опор составляет 8,5 м, для угловых (анкерных) опор - 8,35 м.

Наименьшие допустимые сечения проводов воздушных ЛЭП напряжением более 1000 В, выбираются по условиям механической прочности с учетом возможной толщины их обледенения.

Для воздушных ЛЭП напряжением до 1000 В по условиям механической прочности применяются провода, имеющие сечения не менее:

  • алюминиевые - 16 мм²;
  • сталеалюминиевые -10 мм²;
  • стальные однопроволочные - 4 мм².

На воздушных ЛЭП напряжением до 1000 В устанавливают заземляющие устройства. Расстояние между ними определяется числом грозовых часов в году:

  • до 40 часов - не более 200 м;
    более 40 часов - не более 100 м.

Сопротивление заземляющего устройства должно быть не более 30 Ом.
Устройство воздушных ЛЭП.

Воздушные линии электропередачи состоят из опорных конструкций (опор и оснований), траверс (или кронштейнов), проводов, изоляторов и арматуры. Кроме того, в состав ВЛ входят устройства, необходимые для обеспечения бесперебойного электроснабжения потребителей и нормальной работы линии: грозозащитные тросы, разрядники, заземление, а также вспомогательное оборудование.

Опоры воздушной линии электропередачи поддерживают провода на заданном расстоянии друг от друга и от поверхности земли. А опоры воздушных линий напряжением до 1000 В могут быть использованы также для развешивания на них проводов радиосети, местной телефонной связи, наружного освещения.

Воздушные линии отличаются простотой эксплуатации и ремонта, более низкой стоимостью по сравнению с кабельными линиями такой же протяженности.
В зависимости от назначения бывают опоры промежуточные и анкерные. Промежуточные опоры устанавливают на прямых участках трассы ВЛ, и предназначены они только для поддержания проводов. Анкерные опоры устанавливают для перехода ВЛ через инженерные сооружения или естественные преграды, в начале, в конце и на поворотах ЛЭП. Анкерные опоры воспринимают продольную нагрузку от разности тяжения проводов и тросов в смежных анкерных пролетах. Тяжением называют усилие, с которым натягивают и закрепляют на опорах провод или трос. Тяжение изменяется в зависимости от силы ветра, температуры окружающего воздуха, толщины льда на проводах.
Горизонтальные расстояния между центрами двух опор, на которых подвешены провода, называют пролетом. Вертикальное расстояние между низшей точкой провода в пролете до пересекаемых инженерных сооружений или до поверхности земли или воды носит название габарита провода.

Стрелой провеса провода называют вертикальные расстояния между низшей точкой провода в пролете и горизонтальной прямой, соединяющей точки крепления провода на опорах.

Силовые и осветительные сети напряжением до 1000 В, выполненные изолированными проводами всех соответствующих сечений или небронированными кабелями с резиновой или пластмассовой изоляцией сечением до 16 мм2, относят к электропроводке. Наружной считают электропроводку, проложенную по наружным стенам зданий и сооружений, между зданиями, под навесами, а также на опорах (не более 4 пролетов, каждый длиной 25 м) вне улиц и дорог.

Прокладывают провода на высоте не менее 2,75 м от поверхности земли. При пересечении пешеходных дорожек это расстояние делают не менее 3,5 м, а при пересечении проездов и путей для перевозки грузов - не менее 6 м.

Линии электропередач свыше 1000 В

Воздушные линии электропередачи свыше 1 кВ - устройство для передачи электроэнергии по проводам, расположенным на открытом воздухе и прикрепленным при помощи изолирующих конструкций и арматуры к опорам, несущим конструкциям, кронштейнам и стойкам на инженерных сооружениях (мостах, путепроводах и т.п.).
Провода и защитные тросы через изоляторы или гирлянды изоляторов подвешивают на опорах: промежуточных, анкерных, угловых, концевых, транспозиционных, усиленных (противоветровых и опор больших переходов). Их выполняют свободностоящими или с оттяжками- деревянными, железобетонными или металлическими, одноцепными, двухцепными и т.п.

Для монтажа ВЛ применяют неизолированные одно- и многопроволочные провода из одного и двух металлов (комбинированные) .

В последнее время стали использовать самонесущие изолированные провода (СИП), что позволяет уменьшить расстояние между проводами ВЛ. Для изоляции проводов и тросов от земли и крепления их к опорам служат изоляторы, изготавливаемые из фарфора и стекла.
На ВЛ 110 кВ и выше должны применяться подвесные изоляторы, допускается применение стержневых и опорно-стержневых изоляторов.

На ВЛ 35 кВ и ниже применяются подвесные или стержневые изоляторы. Допускается применение штыревых изоляторов.

Ha BЛ 20 кВ и ниже должны применяться:

  1. на промежуточных опорах-любые тины изоляторов;
  2. на опорах анкерного типа-подвесные изоляторы; допускается применение штыревых изоляторов в I районе по гололеду и в ненаселенной местности.

Выбор типа и материала (стекло, фарфор, полимерные материалы) изоляторов производится с учетом климатических условий (температуры и увлажнения) и условий загрязнения.

На ВЛ, проходящих в особо сложных для эксплуатации условиях (горы, болота, районы Крайнего Севера и т.п.), на ВЛ, сооружаемых на двухцепных и многоцепных опорах, на ВЛ, питающих тяговые подстанции электрифицированных железных дорог , и на больших переходах независимо от напряжения следует применять стеклянные изоляторы или (при наличии соответствующего обоснования) полимерные.

Трасса ВЛ, т.е. полоса местности, где она проходит, после изысканий и согласований с организациями, интересы которых затрагиваются сооружением ВЛ, окончательно устанавливается проектом.

Перед монтажом оформляются документы на отчуждение и отвод земельных участков, снос сооружений, а также на право потрав посевов и порубки леса. Выполняется производственный пикетаж, т.е. разбивка центров установки опор на месте монтажа ВЛ.

Комплекс работ по сооружению ВЛ включает в себя подготовительные, строительные, монтажные и пусковые работы, а также сдачу линии в эксплуатацию.
Работы непосредственно на трассе начинают с приемки от проектной организации и заказчика производственного пикетажа трассы ВЛ. Затем прорубают просеку (если ВЛ или отдельные ее участки проходят по лесной местности). Ширину просеки между кронами деревьев в лесных массивах и зеленых насаждениях принимают в зависимости от высоты деревьев, напряжения ВЛ, рельефа местности. Минимальная ширина просеки определяется расстоянием от проводов при их наибольшем отклонении до кроны деревьев. Это расстояние должно составлять не менее 2 м для ВЛ напряжением до 20 кВ и 3 м - для ВЛ напряжением 35-110 кВ.

Все деревья, находящиеся внутри просеки, вырубают так, чтобы высота пня была не более 1/3 его диаметра. Для проезда транспорта и механизмов по середине просеки на ширине не менее 2,5 м деревья вырубают вровень с землей. Зимой при рубке леса снег вокруг каждого дерева расчищают до уровня земли. Древесину, получаемую при рубке деревьев, сортируют, разделывают и укладывают в штабеля вдоль просеки; сучья складывают в кучи для вывоза.
Основные СМР включают в себя изготовление деревянных опор, развозку опор или их деталей на трассе, разбивку мест рытья котлованов под опоры, рытье котлованов, сборку и установку опор, развозку проводов и других материалов по трассе, монтаж проводов и защитного заземления, фазировку и нумерацию опор.

Для анкерной А-образной опоры разбивают два котлована, оси которых размещают от центра пикетного столбика опоры в обе стороны вдоль оси трассы. Котлованы под угловую А-образную опору размещают по биссектрисе угла поворота линии и перпендикуляра к ней (рис. 4, б). Разметка под опоры с оттяжками и подкосами, а также под узкобазные и широкобазные металлические опоры производится аналогично. Если рытье котлованов проводится бурильными машинами, то производят разбивку только центров котлованов.

Рытье котлованов вручную производится в исключительных случаях, если землеройные машины не могут подойти на пикет по условиям местности. Рытье котлованов должно быть максимально механизировано. Для этой цели используют буровые машины (ямобуры), экскаваторы, бульдозеры. Земельные работы должны проводиться с максимальным уплотнением стенок котлована, что обеспечивает в дальнейшем надежное крепление опор. Глубина котлованов для установки опор в зависимости от грунта и механических нагрузок на опоры определяется проектом.

Элементы опор изготавливают, как правило, на специальных заводах и транспортируют частично собранными.
Последнюю сборку элементов в опоры производят на специализированных участках (полигонах) или непосредственно на пикетах трассы ВЛ. Место сборки опор выбирают в зависимости от их типа, транспортных возможностей, характеристики трассы и т.д., оно определяется в ППР. Окончательную (полную) сборку сложных опор, как правило, выполняют на пикетах трассы ВЛ. Сборку производят на специальных площадках, очищенных от мешающих предметов. Это обеспечивает удобство выкладки деталей опоры. Кроме того, для последующего подъема опоры расчищают путь для свободного прохождения кранов и тягового транспорта, надежно крепят анкеры, удаляют такелажные тросы на необходимое расстояние от действующих ВЛ сильного тока или линий связи.
Как правило, опоры выкладывают и собирают в направлении оси линии, вблизи фундаментов или котлованов с таким расчетом, чтобы собранные опоры не нужно было подтаскивать при подъеме. В состав работ по сборке опор ВЛ входит установка штыревых изоляторов, монтируемых на крючках и штырях с помощью полиэтиленовых колпачков.
Качество и исправность деталей опор проверяют дважды: сначала перед сборкой, затем на пикете трассы, так как есть возможность повреждения опор при перевозке.
На каждую сборную опору ВЛ 35 кВ и выше заполняют паспорт или делают запись в журнале сборки опор.
Для подъема и установки опор лучшим средством является гусеничный кран, который требует минимума такелажных средств. Крановый крюк должен захватывать опору несколько выше ее центра тяжести, иначе она может перевернуться.

При отсутствии гусеничного крана необходимой грузоподъемности или при недостаточном вылете стрелы крана может быть применен автокран грузоподъемностью 5-7 т совместно с трактором. Опору поднимают вначале автокраном до достижения ею угла 35-40° по отношению к горизонтальной поверхности земли. Дальнейший подъем опоры выполняется трактором, натягивающим трос, закрепленный за опору. Для предотвращения опрокидывания опоры в сторону трактора к верхушке опоры до начала подъема прикрепляется тормозной трос.
При отсутствии кранов опоры устанавливают способом падающей стрелы с использованием трактора. Падающую стрелу предварительно поднимают вручную или с помощью небольшого крана. Для предотвращения перехода опоры через вертикальное положение предусматривают тормозной трос. Существует также способ установки опор наращиванием: опору поднимают отдельными секциями, соединяя их в вертикальном положении. Этот способ применяют при транспортировке высоких опор через реки или при установке тяжелых опор.
После установки опор в котлован или на фундаменты их положение выверяют в соответствии с нормативными указаниями. Например, отклонение железобетонных опор от вертикальной оси вдоль и поперек линии (отношение отклонения верхнего конца стойки опоры к ее высоте) должно быть 1:150. Вертикальное положение опор ВЛ 35-110 кВ проверяют теодолитом.

Выверенные опоры прочно закрепляют: в грунте-тщательной послойной трамбовкой; на фундаментах и железобетонных сваях-навертыванием гаек на анкерные болты.
После выверки и закрепления опор на них наносят постоянные знаки- порядковые номера, год установки, условное обозначение названия ВЛ и т.д. Правильность установки опоры подтверждается паспортом, в котором оформляется разрешение на производство работ по монтажу проводов и тросов.

При монтажных работах по ВЛ выполняют следующие основные операции:

  • раскатку проводов и тросов, включая их соединение, и подъем на опоры поддерживающих гирлянд. Установку штыревых изоляторов на опорах производят, как правило, в процессе сборки опор, т.е. до начала монтажных работ;
  • натяжку проводов и тросов, включая визирование, и регулировку стрел провеса, крепление проводов и тросов к опорам анкерного типа;
  • крепление (перекладку из раскаточных роликов в зажимы) проводов и тросов на промежуточных опорах.

Многолетняя практика строительства ВЛ выявила наиболее целесообразную организацию ведения работ, получившую название поточного метода. Каждый вид работ поручают специализированной бригаде. Так, если в первом анкерном пролете, где начинается монтаж, выполняют крепление проводов на промежуточных опорах, то во втором производят натяжку проводов и тросов, в третьем-их раскатку и т.д.

После завершения всех подготовительных работ и осмотра подготовленной к монтажу трассы приступают непосредственно к раскатке проводов. Как правило, раскатку выполняют двумя способами: с неподвижных раскаточных устройств, установленных в начале монтируемого участка, или с помощью подвижных раскаточных устройств (тележек, саней, кабельных транспортеров и т.п.), перемещаемых по трассе тяговым механизмом.
Первый способ не требует изготовления специальных передвижных раскаточных приспособлений (тележек), но во время перемещения по земле возможны повреждения троса и верхних повивов алюминиевых проводов. Барабаны с проводом устанавливают в 15-20 м от первой анкерной опоры в направлении раскатки. Отмотанный с каждого барабана на длину 15-20 м провод или трос с установленным на конце монтажным зажимом крепят к тяговому механизму. Он движется вдоль трассы и после захода на первую промежуточную опору на 30- 40 м останавливается. Провода отцепляют и раскладывают в положении, исходном для подъема на опору.

Убедившись в правильности сборки гирлянды изоляторов, их поднимают на опору.
Этот способ применяют при монтаже коротких линий, а также на участках, где при раскатке проводов возможность их повреждения маловероятна (при хорошем снежном или травяном покрове).
При втором способе раскатки сначала выполняют анкеровку проводов и тросов на первой анкерной опоре. Затем тяговый механизм вместе с раскаточной тележкой передвигают к первой промежуточной опоре. До перемещения ко второй промежуточной опоре с барабана отматывают 5-10 витков провода или троса и раскладывают его в исходное положение. Последующие операции проводят так же, как и при первом способе. Раскатка проводов и тросов проводится только по раскаточным роликам, подвешенным на опорах. При раскатке принимают меры по предохранению проводов от повреждений при трении о землю, особенно о твердые грунты.

Соединение сталеалюминиевых проводов сечением до 185 мм2 в пролетах ВЛ выше 1000 В выполняют овальными соединителями, монтируемыми скручиванием, а сечением до 240 мм2 - соединительными зажимами, монтируемыми сплошным опрессованием. В петлях анкерных и узловых опор соединение выполняют термитной сваркой для сталеалюминиевых проводов сечением до 240 мм2. Провода сечением 300 мм2 соединяют прессуемыми соединителями, а при соединении проводов разных марок используют болтовые зажимы.

При монтаже натяжного зажима, монтируемого с перерезанием провода, на конец провода, образующего петлю (шлейф), и провода, уходящего в пролет, накладывают проволочные бандажи. Концы проводов обрезают и очищают от грязи салфеткой, смоченной в бензине. Внутреннюю поверхность алюминиевого корпуса 1 очищают стальным ершом, подпиливают алюминиевые проволоки провода и высвобождают стальной сердечник провода. Протерев сердечник бензином и смазав тонким слоем технического вазелина, вдвигают его в отверстие анкера 2 до упора. Опрессование натяжного зажима ведут в направлении от проушины к проводу, а опрессование алюминиевого корпуса -от середины зажима к его концу.

Если в шлейфах необходимо разъемное соединение, применяют болтовые и плашечные зажимы, но такое соединение не дает полностью устойчивого и надежного электрического контакта.
Нормами установлены требования к механической прочности соединения в пролетах, которая должна составлять не менее 90 % прочности целого провода. В петлях (шлейфах) допускается меньший запас прочности (30-50 % прочности целого провода). В инструкции по монтажу воздушных линий электропередачи приводятся данные о нагрузках, которые должны выдерживать сварные соединения для каждой марки провода.
Для сварки проводов пропано-кислородным пламенем требуются кислород, пропан и специальная горелка, данная сварка дает хорошее качество стыка.

Надежность электрического контакта сварного соединения определяется коэффициентом, выражающим отношение омического сопротивления участка проводов со сварным соединением к сопротивлению такого же участка целого провода. Этот коэффициент не должен превышать 1,2. Омическое сопротивление коротких участков провода измеряют микроомметром.

Необходимость соединения проводов из неоднородных материалов или проводов разных сечений возникает при ответственных переходах через реки, озера и железнодорожные магистрали. Такого рода соединения выполняют специальными переходными петлевыми зажимами ПП, представляющими собой две гильзы с лапами, соединенными на болтах.

Натяжение проводов ведут, как правило, в пролетах между анкерными или анкерно-угловыми опорами, к которым раскатанные и соединенные провода прикрепляют с помощью натяжных зажимов и натяжных изоляторных гирлянд. Натяжную гирлянду и натяжной зажим поднимают на опору блоком, имеющим трос и монтажный хомут. Для подъема гирлянды используют автомашину, трактор или лебедку.

При подъеме натяжкой гирлянды с проводом на первую по ходу монтажа анкерную опору эта опора не испытывает усилий тяжения. Но при натягивании и закреплении гирлянды на второй анкерной опоре усилия тяжения испытывают обе анкерные опоры, в связи с чем в этот период их укрепляют растяжками.

До начала тяжения проводов должны быть закончены все работы по раскатке и соединению проводов и тросов.
В качестве тягового механизма используют тракторы, автомобили, лебедки. Выбор механизма зависит от реальных условий монтажа (тяговых усилий, трассы, и.д.). При натяжении наблюдают за подъемом проводов и тросов в пролетах и удалением с них зацепившихся предметов и грязи; за прохождением ремонтных муфт и соединительных зажимов через раскаточные ролики; за проезжими дорогами и другими препятствиями в зоне производства работ.
Натяжение проводов на металлических опорах выполняют аналогично.

При натягивании проводов и троса пользуются данными проекта ВЛ, в таблицах которого указаны величины стрел провеса в зависимости от расстояния между опорами и температуры воздуха в период монтажа. Надо иметь в виду, что весной и осенью температура воздуха по утрам может значительно превышать температуру провода, лежащего на земле. В этом случае провод приподнимают от земли автомашиной или трактором и держат в таком положении до тех пор, пока он не примет температуру окружающего воздуха.

Обычно величины стрел провеса даются в монтажных таблицах проекта или в кривых для промежуточного пролета анкерного участка. Когда же анкерный участок имеет неровные пролеты, стрела провеса дается для так называемого приведенного пролета, длина которого указывается в таблицах или кривых проекта ВЛ.
Перед натягиванием проводов следует подготовить надежную связь (сигнализацию) между всеми людьми, участвующими в этой работе: монтером, производящим визирование стрелы провеса, наблюдающим в промежуточном пролете и водителем автомашины или трактора, с помощью которых осуществляется натягивание проводов.

Прием стрелы провеса при непосредственном визировании начинают со среднего провода при горизонтальном расположении проводов и с верхнего - при вертикальном.

При визировании провод (или трос) подводят к линии визирования сверху, для чего провод вначале несколько перетягивают (на 0,3-0,5 м), а затем отпускают до заданной стрелы провеса. При длинных анкерных пролетах (более 3 км) визирование производят в двух пролетах, расположенных в каждой трети анкерного участка. При длине анкерного пролета менее 3 км визирование производят в двух пролетах: наиболее удаленном от тягового механизма (в первую очередь) и более близком (во вторую очередь) к нему.

При натяжении и визировании проводов и тросов строго выдерживают заданное значение стрелы провеса при соответствующей температуре воздуха. Фактическая стрела провеса не должна отличаться от проектной более чем на ±5 % при обязательном соблюдении нормируемых расстояний до земли и инженерных сооружений. Величина разрегулировки провода или троса по отношению к другому не должна быть более 10 % проектной стрелы провеса.
По окончании визирования на проводе у анкерной опоры, расположенной со стороны, противоположной тяговому механизму, наносится метка (бандажом или несмываемой краской). Затем, если натяжной зажим монтируют на земле, провод опускают на землю.

Крепление проводов и тросов к опорам анкерного типа на ВЛ35-100 кВ с подвесными изоляторами проводят с помощью натяжных зажимов: клиновых типа «клин-коуш», болтовых и прессуемых.
На ВЛ до 10 кВ, где в основном применяют штыревые изоляторы, анкерное крепление осуществляют с использованием шишечных зажимов. Тип крепления проводов на штыревых изоляторах (одинарное или двойное) зависит от характеристики ВЛ (условий трассы, марки проводов и др.) и определяется проектом.

Перед монтажом концы проводов и контактные поверхности натяжных зажимов тщательно протирают тряпкой, смоченной в растворителе (бензине, ацетоне и т.п.), а затем зачищают кардощеткой или стальным ершом под слоем нейтрального технического вазелина.

Для обнажения стального сердечника сталеалюминиевого провода алюминиевые жилы нижнего повива подпиливают только до половины их диаметра во избежание повреждения сердечника. Обнаженные концы сердечника промывают в растворителе, насухо вытирают тряпкой и смазывают вазелином. Процесс опрессования натяжных и соединительных зажимов аналогичен.

Монтаж проводов и тросов следует выполнять, как правило, без разрыва их в петлях (шлейфах). Разрезание петель (шлейфов) допускается лишь в исключительных случаях, например во избежание установки соединительного зажима в пролете или на опорах, ограничивающих пролет пересечения с инженерными сооружениями. Монтаж клиновых и болтовых зажимов при неразрезанных петлях производят одновременно в стороны монтируемого анкерного пролета и в сторону пролета по ходу раскатки проводов.

Крепление проводов и тросов на промежуточных опорах на ВЛ до 35 кВ на штыревых изоляторах и в поддерживающих зажимах гирлянд изоляторов ВЛ 35-110 кВ производят только после окончательного закрепления проводов на анкерных опорах, ограничивающих монтируемый участок ВЛ.

Перекладку проводов ВЛ из раскаточных роликов и их крепление производят без опускания их на землю. На ВЛ 35-110 кВ перекладка проводов производится с телескопических вышек, а в случае отсутствия механизмов используют подвесные лестницы (люльки).
На ВЛ до 35 кВ с применением штыревых изоляторов перекладку и крепление проводов проводят непосредственно с опоры.
На ВЛ 6-35 кВ алюминиевые и сталеалюминиевые провода закрепляют боковой вязкой с плотной оболочкой провода алюминиевой проволокой в зоне его соприкосновения с шейкой изолятора. Вязку провода начинают с точки 0, куда накладывают середину вязальной проволоки. Правый конец проволоки следует по линии я, его закрепляют тремя витками на проводе, затем направляют по линии а. Левый конец проволоки следует по линии Ь, его также крепят тремя витками на проводе и направляют по линии b, после чего оба конца проволоки закрепляют на проводе. Алюминиевую проволоку для подмотки и вязки берут того же диаметра, что и проволоку монтируемого провода, но не меньше 2,5 и не больше 4 мм. Длина вязальной проволоки на одно крепление - 1,4 м, длина проволоки для подмотки - около 0,8м.

Монтаж проводов и тросов на переходах выполняют в той же последовательности и порядке, что и при монтаже их между анкерными опорами. По окончании монтажа проводов и тросов переход сдают организации-владельцу по акту. Если монтаж выполнен с отступлениями от проекта, в акте приводят перечень этих отступлений и указывают, кем они разрешены.

Изоляция воздушных электрических сетей подвергается воздействию различного рода перенапряжений. Эти перенапряжения (особенно атмосферные) могут вызвать перекрытия наружной изоляции, перебои внутренней изоляции, электрическую дугу короткого замыкания , аварийное отключение и нарушить бесперебойность электроснабжения.

Воздушные линии напряжением 110 кВ на металлических железобетонных опорах, как правило, защищают от прямых попаданий ударов молний тросами по всей длине. ВЛ напряжением 110 кВ на деревянных опорах и ВЛ напряжением до 35 кВ такой защиты не требуют. Единичные металлические и железобетонные опоры и другие места с ослабленной изоляцией на ВЛ напряжением 35 кВ с деревянными опорами защищают трубчатыми разрядниками или при наличии АПВ-защитными промежутками, а на ВЛ напряжением 110-220 кВ-трубчатыми разрядниками.

Опыт эксплуатации трубчатых разрядников показал, что применение их с целью повышения грозоупорности воздушных линий не дает должного эффекта. Дело в том, что вероятность повреждения трубчатых разрядников в течение грозового сезона имеет порядок 0,001, что при их большом числе снижает показатель грозоупорности. Кроме того, трубчатые разрядники имеют верхний и нижний пределы по току короткого замыкания, а это требует систематических ревизий и затягивает гашение электрической дуги при многократном разряде молнии и параллельном срабатывании нескольких трубчатых разрядников. Поэтому в настоящее время трубчатые разрядники устанавливаются только для защиты точек с ослабленной изоляцией. К их числу относятся: места пересечения ЛЭП, а также пересечения воздушной линии с линией связи. На линиях с деревянными опорами трубчатые разрядники устанавливают на первой тросовой опоре подхода к подстанции и на отдельных угловых металлических опорах. На высоких переходных опорах из-за повышенных индуктированных составляющих перенапряжений при прямом ударе молнии в опору рекомендуется устанавливать трубчатые или вентильные разрядники или грозозащитный трос.
Перед установкой на опору трубчатые разрядники осматривают, не снимая бумажной обертки до окончания монтажа.

Разрядники устанавливают на переходах с таким расчетом, чтобы при повреждении разрядника и перегорании провода последний падал не в переходном, а в соседнем пролете. Установка разрядника должна обеспечивать стабильность внешнего искрового промежутка и исключать возможность перекрытия его струей воды, которая может стекать с верхнего электрода. Разрядник надежно закрепляют на опоре и заземляют. Размеры внешнего искрового промежутка не должны отличаться от проектных более чем на ± 10 %.

Установка разрядников на опорах ВЛ 35-110 кВ производится так, чтобы обеспечить возможность монтажа и демонтажа разрядников без отключения линии. Зоны выхлопа газов разрядников соседних фаз не должны пересекаться, и в них не должно быть элементов конструкций опор, проводов и пр.

Опоры, имеющие грозозащитный трос или другие устройства, грозозащитные, железобетонные и металлические опоры напряжением 3- 35 кВ, опоры, на которых установлены силовые или измерительные трансформаторы , разъединители, предохранители или другие аппараты, а также металлические и железобетонные опоры ВЛ напряжением 110-500 кВ без тросов и других устройств грозозащиты, если это необходимо по условиям обеспечения надежной работы релейной защиты и автоматики, должны быть заземлены. При этом величину сопротивления заземляющих устройств принимают в соответствии с ПУЭ.
Установка трубчатых разрядников на BЛ35 кВ

Для заземления железобетонных опор в качестве заземляющих проводников используют элементы продольной арматуры стоек, которые металлически соединены между собой и могут быть присоединены к заземлению.
Искусственные заземлители в устройствах молниезащиты применяют в тех случаях, когда сопротивление естественных заземлителей превышает нормируемую величину. Их укладывают в грунт в процессе СМР.
Тросы и детали крепления изоляторов к траверсе железобетонных опор металлически соединяют с заземляющим спуском или заземленной аппаратурой. Сечение каждого из заземляющих спусков на опоре ВЛ принимают не менее 35 мм2, а для однопроволочных-диаметр не менее 10 мм. Допускается применение стальных оцинкованных однопроволочных спусков диаметром не менее 6 мм.

На ВЛ с деревянными опорами рекомендуется болтовое соединение заземляющих спусков; на металлических и железобетонных опорах соединение заземляющих спусков может быть как сварным, так и болтовым.
Заземлители ВЛ, как правило, заглубляют на глубину, указанную в проекте.

Для монтажа ВЛ напряжением до 1000 В применяют деревянные, преимущественно с железобетонными приставками (пасынками) и железобетонные опоры. Для изготовления деревянных опор используются пропитанные антисептиком бревна из леса III сорта (сосна, ель, пихта), а для траверс - только сосна или лиственница. Пропитка древесины антисептиком значительно удлиняет срок службы деревянных опор.

Вертикальные и горизонтальные расстояния от проводов ВЛ до деревьев и кустов должны быть не менее 1 м. Вырубка просеки по лесным массивам и зеленым насаждениям, где проходит трасса ВЛ, не является обязательной.
В населенной местности с одно- и двухэтажной застройкой ВЛ должны иметь заземляющие устройства, предназначенные для защиты от атмосферных перенапряжений. Сопротивления этих заземляющих устройств должны быть не менее 30 Ом, а расстояния между ними - не менее 200 м для районов с числом грозовых часов в году до 40,100 м - для районов с числом грозовых часов в году более 40.

Кроме того, заземляющие устройства должны быть выполнены:

  1. на опорах с ответвлениями к вводам в здания, в которых может быть сосредоточено болшое количество людей (школы, ясли, больницы) или которые представляют большую материальную ценность (животноводческие и птицеводческие помещения, склады);
  2. на концевых опорах линий, имеющих ответвления.

Котлованы под одностоечные промежуточные опоры, как правило,
разрабатывают с помощью ямобуров с разметкой точно по оси трассы во избежание выхода опоры из створа линии. В местах прохождения подземных коммуникаций (например, кабелей) выемку грунта производят вручную.
Соединение проводов в пролетах ВЛ следует производить при помощи соединительных зажимов, обеспечивающих механическую прочность не менее 90 % разрывного усилия повода.

В одном пролете ВЛ допускается не более одного соединения на каждый провод.
В пролетах пересечения ВЛ с инженерными сооружениями соединение проводов ВЛ не допускается.
Соединение проводов в петлях анкерных опор должно производиться при помощи зажимов или сваркой.
Провода разных марок или сечений должны соединяться только в петлях анкерных опор.
Крепление неизолированных проводов к изоляторам и изолирующим траверсам на опорах ВЛ, за исключением опор для пересечений, рекомендуется выполнять одинарным.

На ВЛ выше 1 000 В двойное крепление проводов выполняют на анкерных опорах, опорах пересечений и в населенной местности.

Расположение фазных проводов на опоре может быть любым, а нулевой провод, как правило, располагают ниже фазных проводов.

Безопасность при проведении СМР и электромонтажных работ обеспечивается непрерывным надзором за работой бригады, который ведет бригадир, обязанный следить за соблюдением работающими правил безопасности производства работ, исправностью инструмента и защитных приспособлений, правильной расстановкой людей.

Кроме общих правил техники безопасности, при монтаже ВЛ надо соблюдать следующие правила:

  1. При приближении грозы все работы на ВЛ должны быть прекращены, а люди выведены за пределы трассы. При монтаже воздушных линий большой протяженности для отвода отдельных разрядов молнии требуется обязательное заземление всех монтируемых проводов на участках длиной 3-5 км.
  2. Защита персонала от воздействия электрических потенциалов, наведенных в проводах и тросах (особенно в жаркое время года и при грозе), должна осуществляться путем устройства защитного заземления и закорачивания поводов и тросов на всех анкерных опорах монтируемого участка.
  3. Подъем опор производят подъемными и тяговыми механизмами и приспособлениями. Во избежание отклонения и падения опоры в сторону должна быть обеспечена надлежащая регулировка ее положения оттяжками и расчалками.
  4. При подъеме опоры не разрешается стоять или проходить под тросами и стрелами механизмов, а также вблизи них и в зоне возможного падения опоры или монтажной стрелы. Из зоны производства работ должны быть удалены все лица, не принимающие непосредственного участия в подъеме опоры. При подъеме опоры методом монтажной стрелы ее следует сначала поднять от земли на 0,5 м и проверить все механизмы и крепления, после чего продолжать подъем. При подъеме опоры на переходах через инженерные сооружения или в сложных условиях (например, в коридоре между двумя линиями, находящимися под напряжением) обязательно присутствие руководителя работ. При подъеме опоры вблизи действующей ВЛ, когда возможно задевание проводов, они должны быть отключены.
  5. При монтаже проводов запрещается:
  6. влезать на анкерные, угловые, а также плохо закрепленные или качающиеся опоры;
  7. работать без предохранительного пояса;
  8. находиться под проводами во время их монтажа.

Линии электропередачи - центральный элемент системы передачи и распределения ЭЭ. Линии выполняются преимущественно воздушными и кабельными. На энергоемких предприятиях применяют также токопроводы. па генераторном напряжении электростанций - шинопроводы; в производственных и жилых зданиях - внутренние проводки.

Выбор типа ЛЭП, ее конструктивного исполнения определяется назначением линии, местом расположения (прокладки) и, соответственно, ее номинальным напряжением, передаваемой мощностью, дальностью электропередачи, площадью и стоимостью занимаемой (отчуждаемой) территории, климатическими условиями, требованиями электробезопасности и техническом эстетики и рядом других факторов и, в конечном итоге, экономической целесообразностью передачи электрической энергии . Указанный выбор производится на стадиях принятия проектных решении.

В данном разделе формулируются требования, которыми должны удовлетворять ЛЭП, условия их выполнения и на их основе представляются некоторые принципы и варианты конструктивного исполнения линий электропередачи.

Наиболее распространенны на всех ступенях системы электроснабжения воздушные линии ввиду их относительно малой стоимости. По этой причине применение ВЛ должно рассматриваться в первую очередь.

Воздушные линии электропередачи

Воздушными называются линии, предназначенные для передачи и распределения ЭЭ по проводам, расположенным на открытом воздухе и поддерживаемым с помощью опор и изоляторов. Воздушные ЛЭП сооружаются и эксплуатируются в самых разнообразных климатических условиях и географических районах, подвержены атмосферному воздействию (ветер, гололед, дождь, изменение температуры). В связи с этим ВЛ должны сооружаться с учетом атмосферных явлений, загрязнения воздуха, условий прокладки (слабозаселенная местность, территория города, предприятия) и др. Из анализа условий ВЛ следует, что материалы и конструкции линий должны удовлетворять ряду требований: экономически приемлемая стоимость, хорошая электропроводность и достаточная механическая прочность материалов проводов и тросов, стойкость их к коррозии, химическим воздействиям; линии должны быть электрически и экологически безопасны, занимать минимальную территорию.

Конструктивное исполнение воздушных линий. Основными конструктивными элементами ВЛ являются опоры, провода, грозозащитные тросы, изоляторы и линейная арматура.

По конструктивному исполнению опор наиболее распространены одно- и двухцепные ВЛ. На трассе линии могут сооружаться до четырех цепей. Трасса линии - полоса земли, на которой сооружается линия. Одна цепь высоковольтной ВЛ объединяет три провода (комплекта проводов) трехфазной линии, в низковольтной - от трех до пяти проводов. В целом конструктивная часть ВЛ (рис. 1) характеризуется типом опор, длинами пролетов, габаритными размерами, конструкцией фаз, количеством изоляторов.

Длины пролетов ВЛ выбирают по экономическим соображениям, т. к. с увеличением длины пролетов возрастает провис проводов, необходимо увеличить высоту опор

Н, чтобы не нарушить допустимый габарит линии h (рис. 1. б), при этом уменьшится количество опор и изоляторов на линии. Габарит линии -наименьшее расстояние от нижней точки провода до земли (воды, полотна дорога) - должен был. таким, чтобы обеспечить безопасность движения людей и транспорта под линией. Это расстояние зависит от номинальною напряжения линии и условий местности (населенная, ненаселенная). Расстояние между соседними фазами линии зависит главным образом от се номинального напряжения . Основные конструктивные размеры ВЛ приведены в табл. 1. Конструкция фазы ВЛ в основном определяется количеством проводов в фазе. Если фаза выполнена несколькими проводами, она называется расщепленной. Расщепленными выполняют фазы ВЛ высокою и сверхвысокого напряжения. При этом в одной фазе используют два провода при 330 (220) кВ, три -при 500 кВ, четыре - пять при 750 кВ, восемь-двенадцать - при 1150 кВ.

Опоры воздушных линий. Опоры ВЛ - конструкции, предназначенные для поддерживания проводов на необходимой высоте над, землей, водой и каким-либо инженерным сооружением. Кроме того, на опорах в необходимых случаях подвешивают необходимые стальные заземленные тросы для защиты проводов от прямых ударов молнии и связанных с этим перенапряжением.

Таблица №1

Конструктивные размеры ВЛ

Номинальное напряжение, кВ Расстояние между фазами D , м Длинна пролета l, м Высота опоры Н , м Габарит линии h, м
0,5 40-50 8-9 6-7
6-10 1 50-80 10 6-7
35 3 150-200 12 6-7
110 4-5 170-250 13-14 6-7
150 5,5 200-280 15-16 7-8
220 7 250-350 25-30 7-8
330 9 300-400 25-30 7,5-8
500 10-12 350-450 25-30 8
750 14-16 450-750 30-41 10-12
1150 12-19 - 33-54 14,5-17,5

Типы и конструкции опор разнообразны. В зависимости от назначения и размещения на трассе ВЛ они подразделяются на промежуточные и анкерные. Отличаются опоры материалом, исполнением, и способом крепления, подвязки проводов. В зависимости от материала они бывают деревянные, железобетонные и металлические.

Промежуточные опоры наиболее простые, служат для поддерживания проводов на прямых участках линии. Они встречаются наиболее часто; доля их в среднем составляет80-90% общего числа опор ВЛ. Провода к ним крепятся с помощью поддерживающих (подвесных) гирлянд изоляторов или штыревых изоляторов. Промежуточные опоры в нормальном режиме испытывают нагрузку в основном от собственного веса проводов, тросов и изоляторов, подвесных гирлянды изоляторов свисают вертикально.

Анкерные опоры устанавливают в местах жесткого крепления проводов; они делятся на концевые, угловые, промежуточные и специальные. Анкерные опоры, рассчитаны на продольные и поперечные составляющие натяжения проводов (натяжные гирлянды изоляторов расположены горизонтально), испытывают наибольшие нагрузки поэтому они значительно дороже и сложнее промежуточных; число их на каждой линии должно быть минимальным.В частности, концевые и угловые опоры, устанавливаемые в конце или на повороте линии, испытывают постоянное натяжение, проводов и тросов: одностороннее или по равнодействующей угла поворота; промежуточные анкерные, устанавливаемые на протяженных прямых участках, также рассчитываются на одностороннее натяжение, которое может возникнуть при обрыве части проводов в примыкающем к опоре пролете.

Специальные опоры бывают следующих типов: переходные - для больших пролетов пересечения рек, ущелий; ответвительнные - для выполнения ответвлений от основной линии; транспозиционные - для изменения порядка расположения проводов на опоре.

Наряду с назначением (типом) конструкция опоры определяется количеством цепей ВЛ и взаимным расположением проводов (фаз). Опоры (и линии) выполняются в одно- или двухцепном варианте, при этом провода на опорах могут размещаться треугольником, горизонтально, обратной “елкой” и шестиугольником, или “бочкой” (рис. 2).


Несимметричное расположение фазных проводов по отношению друг к другу (рис. 2) обуславливают неодинаковость индуктивностей и емкостей разны фаз. Для обеспечения симметрии трехфазной системы и выравнивания по фазам реактивных параметров на длинных линиях (более 100 км) напряжением 110 кВ и выше осуществляют перестановку (транспозицию) проводов в цепи с помощью соответствующих опор. При полном цикле транспозиции каждый провод (фаза) равномерно по длине линии занимает последовательно положение всех трех фаз на опоре (рис. 3).


Деревянные опоры (рис. 4) изготавливают из сосны или лиственницы и применяют на линиях напряжением до 110 кВ в лесных районах, но все реже. Основными элементами опор являются пасынки (приставки) 1, стойки 2, траверсы 3, раскосы 4, подтраверсные брусья 6 и ригели 5. Опоры просты в изготовлении, дешевы, удобны в транспортировке. Основной их недостаток - недолговечность из-за гниения древесины, несмотря на ее обработку антисептиком. Применение железобетонных пасынков (приставок) увеличивает срок службы опор до 20-25 лет.


Железобетонные опоры (рис. №5) наиболее широко применяются на линиях напряжением до 750 кВ. Они могут быть свободностоящими (промежуточными) и с оттяжками (анкерными). Железобетонные опоры долговечнее деревянных, просты в эксплуатации, дешевле металлических.


Металлические (стальные) опоры (рис. 6) применяют на линиях напряжением 35 кВ и выше. К основным элементам относятся стойки 1, траверсы 2, тросостойки 3, оттяжки 4 и фундамент 5. Они прочны и надежны, но достаточно металлоемкие, занимают большую площадь, требуют для установки сооружения специальных железобетонных фундаментов и в процессе эксплуатации должны окрашиваться для предохранения от коррозии.

Металлические опоры используются в тех случаях, когда технически сложно и неэкономично сооружать ВЛ на деревянных и железобетонных опорах (переходы через реки, ущелья, выполнения отпаек от ВЛ и т.п.)


Провода воздушных линий. Провода предназначены для передачи электроэнергии. Наряду с хорошей электропроводностью (возможно меньшим электрическим сопротивлением), достаточной механической прочностью и устойчивостью против коррозии, они должны удовлетворять условиям экономичности. С этой целью применяют провода из наиболее дешевых металлов алюминия, стали, специальных сплавов алюминия. Хотя медь обладает наибольшей проводимо-медные провода из-за высокой стоимости и необходимости для других целей в новых линиях не используются. Их использование допускается в контактных сетях, в сетях горных предприятий.

На ВЛ применяются преимущественно неизолированные (голые) провода. По конструктивному исполнению провода могут быть одно- и многопроволочными, полыми (рис. 7). Однопроволочные, преимущественно стальные провода используются ограничено в низковольтных сетях. Для придания им гибкости и большей механической прочности провода изготавливают многопроволочными из одного металла (алюминия или стали) и из двух металлов (комбинированные) - алюминия и стали. Сталь в проводе увеличивает механическую прочность.


Исходя из условий механической прочности, алюминиевые провода марок А и АКП (рис. 7) применяют на ВЛ напряжением до 35 кВ. Воздушные линии 6-35 кВ могут также выполнятся сталеалюминевыми проводами, а выше 35 кВ линии монтируются исключительно сталеалюминевыми проводами. Сталеалюминевые провода имеют вокруг стального сердечника повивы из алюминиевых проволок. Площадь сечения стальной части обычно в 4-8 раз меньше алюминиевой, но сталь воспринимает около 30-40 % всей механической нагрузки; такие провода используются на линиях с длинными пролетами и на территориях с более тяжелыми климатическими условиями (с большей толщиной стенки гололеда). В марке сталеалюминевых проводов указывается сечение алюминиевой и стальной части, например, АС 70/11, а также данные об антикоррозийной защите, например, АСКС, АСКП - такие же провода, как и АС, но с заполнителем сердечника (С) или всего провода (П) антикоррозийной смазкой; АСК - такой же провод, как и АС, но с сердечником, покрытым полиэтиленовой пленкой. Провода с антикоррозийной зашитой применяются в районах, где воздух загрязнен примесями, действующими разрушающе на алюминий и сталь.

Повышение диаметров проводов при неизменности расходования проводникового материала может осуществляться применением проводов с наполнителем из диэлектрика и полых проводов (рис. 7, г, д). Такое использование снижает потери на коронирование. Полые провода используются главным образом для ошиновки распределительных устройств 220 кВ и выше.

Провода из сплавов алюминия (АН - нетермообработанные, АЖ - термообработанные) имеют большую но сравнению с алюминиевыми механическую прочность и практически такую же электрическую проводимость. Они используются на ВЛ напряжением выше 1 кВ в районах с толщенной стенки голоде 20 мм.

Все большее применение находят ВЛ с самонесущими изолированными проводами 0,38-10 кВ. В линиях напряжением 380/220 В провода состоят из несущего изолированного или неизолированного провода, являющегося нулевым, трех изолированных фазных проводов, одного изолированного провода (любой фазы) наружного освещения. Фазные изолированные провода навиты вокруг несущего нулевого провода (рис. 8). Несущий провод является сталеалюминевым, а фазные - алюминиевыми. Последние покрыты светостойким термостабилизированным (сшитым) полиэтиленом (провод типа АПВ). К преимуществам ВЛ с изолированными проводами перед линиями с голыми проводами можно отнести отсутствия изоляторов на опорах, максимальное использование высоты опоры для подвески проводов; нет необходимости в обрезке деревьев в зоне прохождения линии.


Грозозащитные тросы наряду с искровыми промежутками, разрядниками, ограничителями напряжений и устройствами заземления служат для защиты линии от атмосферных перенапряжений (грозовых разрядов). Тросы подвешивают над фазными проводами (рис. 2) на ВЛ напряжением 35 кВ и выше в зависимости от района по грозовой деятельности и материала опор, что регламентируется Правилами устройств электроустановок (ПУЭ). В качестве грозозащитных проводов обычно применяют стальные оцинкованные канаты марок С 35, С 50 и С 70, а при использовании тросов для высокочастотной связи -сталеалюминевые провода. Крепление тросов на всех опорах ВЛ напряжением 220-750 кВ должно быть выполнено при помощи изолятора, шунтированного искровым промежутком. На линиях 35-110 кВ крепление тросов к металлическим и железобетонным промежуточным опорам осуществляется без изоляции троса.

Изоляторы воздушных линий. Изоляторы предназначены для изоляции и крепления проводов. Изготавливаются они из фарфора и закаленного стекла - материалов, обладающих высокой механической и электрической прочностью и стойкостью к атмосферным воздействиям. Существенным достоинством стеклянных изоляторов является то, что при повреждении закаленное стекло рассыпается. Это облегчает нахождение поврежденных изоляторов на линии.


По конструкции, способу закрепления на опоре изоляторы разделяют на штыревые и подвесные. Штыревые изоляторы (рис. 9, а, б) применяются для линий напряжением до 10 кВ и редко (для малых сечений) - 35 кВ. Они крепятся к опорам при помощи крюков или штырей. Подвесные изоляторы (рис.9, в) используются на ВЛ напряжением 35 кВ и выше. Они состоят из фарфоровой или стеклянной изолирующей части 1, шапки из ковкого чугуна 2, металлического стержня 3 и цементной связки 4. Изоляторы собираются в гирлянды (рис. 10, г): поддерживающие на промежуточных опорах и натяжные на анкерных. Количество изоляторов в гирлянде зависит от напряжения, типа и материала опор, загрязненности атмосферы. Например, в линии 35 кВ - 3-4 изолятора, 220 кВ - 12- 14; на линиях с деревянными опорами, обладающих повышенной грузоподъемностью, количество изоляторов в гирлянде на один меньше, чем на линиях с металлическими опорами; в натяжных гирляндах, работающих в наиболее тяжелых условиях, устанавливают на 1-2 изолятора больше, чем в поддерживающих.

Разработаны и проходят опытную промышленную проверку изоляторы с использованием полимерных материалов (рис. 9, г, д). Они представляют собой стержневой элемент из стеклопластика, защищенный покрытием с ребрами из фторопласта или кремнеорганнческой резины. Стержневые изоляторы по сравнению с подвесными имеют меньший вес и стоимость, более высокую механическую прочность, чем из закаленного стекла. Основная проблема - обеспечить возможность их длительной (более 30 лег) работы.

Линейная арматура предназначена для закрепления проводов к изоляторам и тросов к опорам и содержит следующие основные элементы: зажимы, соединители, дистанционные распорки и др. (рис. 10). Поддерживающие зажимы применяют для подвески и закрепления проводов ВЛ на промежуточных опорах с ограниченной жесткостью заделки (рис. 10, а). На анкерных опорах для жесткого крепления проводов используют натяжные гирлянды и зажимы - натяжные и клиновые (рис. 10, б, в). Сцепная арматура (серьги, ушки, скобы, коромысла) предназначена для подвески гирлянд на опорах. Поддерживающая гирлянда (рис. 10, г) закрепляется на траверсе промежуточной опоры с помощью серьги 1, вставляемой другой стороной в шапку верхнего подвесного изолятора 2. Ушко 3 используется для прикрепления к нижнему изолятору гирлянды поддерживающего зажима 4. Дистанционные распорки (рис. 10, д), устанавливаемые в пролетах линий 330 кВ и выше с расщепленными фазами, предотвращают схлестывание, соударения и закручивание отдельных проводов фаз. Соединители применяются для соединения отдельных участков провода с помощью овальных или прессующих соединителей (рис. 10, е, ж). В овальных соединителях провода либо скручиваются, либо обжимаются; в прессуемых соединителях, применяемых для соединения сталеалюминевых проводов больших сечений, стальная и алюминиевые части опрессовываются отдельно.


Результатом развития техники передачи ЭЭ на дальние расстояния являются различные варианты компактных ЛЭП, характеризующиеся меньшим расстоянием между фазами и, как следствие, меньшими индуктивными сопротивлениями и шириной трассы линии (рис. 11). При использовании опор “охватывающего типа” (рис. 11, а) уменьшение расстояния достигается за счет расположения всех фазных расщепленных конструкций внутри “охватывающего портала” или по одну сторону от стойки опор (рис. 11, б). Сближение фаз обеспечивается с помощью междуфазных изоляционных распорок. Предложены различные варианты компактных линий с нетрадиционными схемами расположения проводов расщепленных фаз (рис. 11, в -и) . Кроме уменьшения ширины трассы на единицу передаваемой мощности, компактные линии могут быть созданы для передачи повышенных мощностей (до 8-10 ГВт); такие линии вызывают меньшую напряженность электрического поля на уровне земли и обладают рядом других технических достоинств.

К компактным линиям относятся также управляемые самокомпенсирующиеся линии и управляемые линии с нетрадиционной конфигурацией расщепленных фаз. Они представляют собой двухцепные линии, в которых попарно сдвинуты одноименные фазы разных ценен. При этом к цепям подводятся напряжения, сдвинутые на определенный угол. За счет режимного изменения с помощью специальных устройств угла фазного сдвига осуществляется управление параметрами линии.


Кабельные линии электропередачи

Кабельная линия (КЛ) линия для передачи электроэнергии, состоящая из одного или нескольких параллельных кабелей, выполненная каким-либо способом прокладки (рис. 11). Кабельные линии прокладывают там, где строительство ВЛ невозможно из-за стесненной территории, неприемлемо по условиям техники безопасности, нецелесообразно по экономическим, архитектурно-планировочным показателям и другими требованиям. Наибольшее применение КЛ нашли при передаче и распределении ЭЭ на промышленных предприятиях и в городах (системы внутреннего электроснабжения) при передаче ЭЭ через большие водные пространства и т. п. Достоинства и преимущества кабельных линии по сравнению с воздушными: неподверженность атмосферным воздействиям, скрытность трассы и недоступность для посторонних лиц, меньшая повреждаемость, компактность линии и возможность широкого развития электроснабжения потребителей городских и промышленных районов. Однако КЛ значительно дороже воздушных того же напряжения (в среднем в 2-3 раза для линий 6-35 кВ и 5-6 раз для линий 110 кВ и выше), сложнее при сооружении и эксплуатации.


В состав КЛ входят: кабель, соединительные и концевые муфты, строительные конструкции, элементы крепления и др.

Кабель - готовое заводское изделие, состоящее из изолированных токопроводящих жил, заключенных в защитную герметичную оболочку и броню, предохраняющие их от влаги, кислот и механических повреждений. Силовые кабели имеют от одной до четырех алюминиевых или медных жил сечением 1,5-2000 мм 2 . Жилы сечением до 16 мм 2 -однопроволочные, свыше - многопроволочные. По форме сечения жилы круглые, сегментные или секторные.

Кабели напряжением до 1 кВ выполняются, как правило, четырехжильными, напряжением 6-35 кВ - трехжильными, а напряжением 110-220 кВ - одножильными.

Защитные оболочки делаются из свинца, алюминия, резины и полихлорвинила. В кабелях напряжением 35 кВ каждая жила дополнительно заключается в свинцовую оболочку, что создаст более равномерное электрическое поле и улучшает отвод тепла. Выравнивание электрического ноля у кабелей с пластмассовой изоляцией и оболочкой достигается экранированием каждой жилы полупроводящей бумагой.

В кабелях на напряжение 1-35 кВ для повышения электрической прочности между изолированными жилами и оболочкой прокладывается слой поясной изоляции.

Броня кабеля, выполняется из стальных лент или стальных оцинкованных проволок, защищается от коррозии наружным покровом из кабельной протяжки, пропитанной битумом и покрытой меловым составом.

В кабелях напряжением 110 кВ и выше повышение электрической прочности бумажной изоляции их наполняют газом или маслом под избыточным давлением (газонаполненные и маслонаполненные кабели).

В марке обозначении кабеля указывается сведения о его конструкции, номинальное напряжение, количество и сечение жил. У четырехжильных кабелей напряжением до 1 кВ сечение четвертой (“нулевой”) жилы меньше, чем фазной. Например, кабель ВПГ-1-3Х35+1Х25 - кабель с тремя медными жилами сечением по 35 мм 2 и четвертой сечением 25 мм 2 , полиэтиленовой (П) изоляцией на 1 кВ, оболочкой из полихлорвинила (В), небронированный, без наружною покрова (Г) - для прокладки внутри помещений, в каналах, туннелях, при отсутствии механических воздействий на кабель; кабель АОСБ-35-3Х70 - кабель с тремя алюминиевыми (А) жилами по 70 мм 2 , с изоляцией на 35 кВ, с отдельно освинцованными (О) жилами, в свинцовой (С) оболочке, бронированный (Б) стальными лентами, с наружным защитным покровом -для прокладки в земляной траншее; ОСБ-35-3Х70 - такой же кабель, но с медными жилами.

Конструкции некоторых кабелей представлены на рисунке 13. На рисунке 13, а,б даны силовые кабели напряжением до 10 кВ.

Четырехжильный кабель напряжением 380 В (см. рис. 13, а) содержит элементы: 1 - токопроводящие фазные жилы; 2 - бумажная фазная и поясная изоляция; 3 - защитная оболочка; 4 - стальная броня; 5 - защитный покров; 6 - бумажный наполнитель; 7 - нулевая жила.

Трехжильный кабель с бумажной изоляцией напряжением 10 кВ (рис. 13, б) содержит элементы: 1 - токоведущие жилы; 2 - фазная изоляция; 3 - общая поясная изоляция; 4 - защитная оболочка; 5 - подушка под броней; 6 - стальная броня; 7 - защитный покров; 8 - заполнитель.

Трехжильный кабель напряжением 35 кВ изображен на рис. 1.3, в. В него входят- 1 - круглые токопроводящие жилы; 2 - пол у про водя тис экраны; 3 - фазная изоляция; 4 - свинцовая оболочка; 5 - подушка; 6 - заполнитель из кабельной пряжи; 7 - стальная броня; 8 - защитный покров.

На рис. 1.3, г представлен маслонаполненный кабель среднего и высокого давления напряжением 110-220 кВ. Давление масла предотвращает появление воздуха к его ионизацию, устраняя одну из основных причин пробоя изоляции. Три однофазных кабеля помещены в стальную трубу 4, заполненную маслом 2 под избыточным давлением. Токоведущая жила 6 состоит из медных круглых проволок и покрыта бумажной изоляцией 1 с вязкой пропиткой; поверх изоляции наложен экран 3 в виде медной перфорированной лепты и бронзовых проволок, предохраняющих изоляцию от механических повреждений при протягивании кабеля в трубе. Снаружи стальная труба защищена покровом 5.

Широко распространены кабели в полихлорвиниловой изоляции, производимые трех-, четырех- и пятижильными (1.3, е) или одножильными (рис. 1.3, д).

Кабели изготавливаются отрезками ограниченной длины в зависимости о. спряжения и сечения. При прокладке отрезки соединяют посредством соединительных муфт, герметизирующих места соединения. При этом концы жил кабелей освобождают от изоляции и заделывают в соединительные зажимы.


При прокладке в земле кабелей 0,38-10 кВ для зашиты от коррозии и механических повреждений место соединения заключается в защитный чугунный разъемный кожух. Для кабелей 35 кВ используются также стальные или стеклопластиковые кожухи. На рис. 14, а показано соединение трехжильного низковольтного кабеля 2 в Чугунной муфте 1. Концы кабеля фиксированы фарфоровой распоркой 3 и соединены займом 4. Муфты кабелей до 10 кВ с бумажной изоляцией заполняются битуминозными составами, кабели 20-35 кВ - маслонаполненными. Для кабелей с пластмассовой изоляцией применяют соединительные муфты из термоусаживаемых изоляционных трубок, число которых соответствует числу фаз, и одной термоусаживаемой трубки для нулевой жилы, усаживаемых в термоусаживаемую муфту (рис. 14, б). Применяют и другие конструкции соединительных муфт.


На концах кабелей применяют концевые муфты или концевые заделки. На рис. 15, а приведена мастиконаполненая трехфазная муфта наружной установки с фарфоровыми изоляторами для кабелей напряжением 10 кВ. Для трехжильных кабелей с пластмассовой изоляцией применяется концевая муфта, представленная на рис. 15, 6. Она состоит из термоусаживаемой перчатки 1, стойкой к воздействию окружающей среды, и полупроводящих термоусаживаемых трубок 2, с помощью которых на конце трехжильного кабеля создаются три одножильных кабеля. На отдельные жилы надеваются изоляционные термоусаживаемые трубки 3. На них монтируется нужное количество термоусаживаемых изоляторов 4.


Для кабелей 10 кВ и ниже с пластмассовой изоляцией во внутренних помещениях применяют сухую разделку (рис. 15, в). Разделанные концы кабеля с изоляцией 3 обматывают липкой полихлорвиниловой лентой 5 и лакируют; концы кабеля герметизируют кабельной массой 7 и изоляционной перчаткой 1, перекрывающей оболочку кабеля 2, концы перчатки и жилы дополнительно уплотняют и обматывают полихлорвиниловой лентой 4, 5, последнюю для предотвращения отставания и разматывания фиксируют бандажами из шпагата 6.

Способ прокладки кабелей определяется условиями трассы линии. Кабели прокладываются в земляных траншеях, блоках, туннелях, кабельных туннелях, коллекторах, по кабельным эстакадам, а так же по перекрытиям зданий (рис. 12).

Наиболее часто на территории городов, промышленных предприятиях кабели прокладывают в земляных траншеях (рис. 12, а). Для предотвращения повреждении из-за прогибов на дне траншеи создают мягкую подушку из слоя просеянной земли или песка. При прокладке в одной траншее нескольких кабелей до 10 кВ расстояние по горизонтали между ними должно быть не менее 0,1 м, между кабелями 20-35 кВ - 0,25 м. Кабель засыпают небольшим слоем такого же грунта и закрывают кирпичом или бетонными плитами для защиты от механических повреждений. После этого кабельную траншею засыпают землей. В местах перехода через дороги и на вводах в здания кабель прокладывают в асбестоцементных или иных трубах. Это защищает кабель от вибраций и обеспечивает возможность ремонта без вскрытия полотна дороги. Прокладка в траншеях - наименее затратный способ кабельной канализации ЭЭ.

В местах прокладки большого количества кабелей агрессивный грунт и блуждающие тою” ограничивают возможность их прокладки в земле. Поэтому наряду с другими подземными коммуникациями используют специальные сооружения: коллекторы, туннели канаты, блоки и эстакады. Коллектор (рис. 12, б) служит для совместного размещения в нем разных подземных коммуникаций: кабельных силовых линий и связи, водопровода по городским магистралям и на территории крупных предприятий. При большом числе параллельно прокладываемых кабелей, например, от здания мощной электростанции, применяют прокладку в туннелях (рис. 12, в). При этом улучшаются условия эксплуатации, снижается площадь поверхности земли, необходимая для прокладки кабелей. Однако стоимость туннелей весьма велика. Туннель предназначен только для прокладки кабельных линий. Его сооружают под землей из сборного железобетона или канализационных труб большого диаметра, емкость туннеля - от 20 до 50 кабелей.

При меньшем числе кабелей применяют кабельные каналы (рис. 12, г), закрытые землей или выходящие на уровень поверхности земли. Кабельные эстакады и галереи (рис. 12, д) используют для надземной прокладки кабелей. Этот вид кабельных сооружений широко применяют там, где непосредственно прокладка силовых кабелей в земле является опасной из-за оползней, обвалов, вечной мерзлоты и т. п. В кабельных каналах, туннелях, коллекторах и по эстакадам кабели прокладываются по кабельным кронштейнам.

В крупных городах и на больших предприятиях кабели иногда прокладываются в блоках (рис. 12,е), представляющих асбестоцементные трубы, стыки, которые заделаны бетоном. Однако в них кабели плохо охлаждаются, что снижает их пропускную способность. Поэтому прокладывать кабели в блоках следует лишь при невозможности прокладки их в траншеях.

В зданиях, по стенам и перекрытиям большие потоки кабелей укладывают в металлические лотки и короба. Одиночные кабели могут прокладываться открыто по стенам и перекрытиям или скрыто: в трубах, в пустотелых плитах и других строительных частях зданий.

Токопроводы, шинопроводы и внутренние проводки

Токопроводом называют линию электропередачи, тоководущие части которой выполнены из одного или нескольких жестко закрепленных алюминиевых или медных проводов или шин и относящихся к ним поддерживающих и опорных конструкций и изоляторов, защитных оболочек (коробов). Шинопроводом называют защищенные и закрытые токопроводы, выполненные жесткими шинами. Шинопроводы до 1 кВ применяют в цеховых сетях промышленных предприятий, более 1 кВ - в цепях генераторного напряжения для передачи ЭЭ к повышающим трансформаторам электростанций. Токопроводы 6-35 кВ используются для магистрального питания энергоемких предприятий при токах 1,5-6,0 кА. Шинопроводы до 1 кВ промышленных предприятий (комплектные токопроводы) монтируют из стандартных секций заводского изготовления. Отдельные секции 1 такого токопровода (рис. 15, а) состоят из коробов с размещенными в них элементами токопроводов, ответвительной 3 и вводной 2 коробок, присоединенных через ответвительную секцию 4 к магистрали 5. Комплектный шинопровод, выпускаемый трех- и четырехпроходным (рис. 15, б) состоит из секций в виде отрезков шин 1, закрепленных на прокладках 3 в коробе 2 с зажимами 4 для присоединения электропотребителей. Длина таких секций по условиям транспортировки не превышает 6 м. Короба шинопроводов необходимы для защиты от внешних воздействий, иногда их используют в качестве нулевого проводника.


Жесткий симметричный токопровод 6-10 кВ выполняется из шин коробчатого сечения, жестко закрепленных на опорных изоляторах, прикрепленных к обшей стальной конструкции по вершинам равностороннего треугольника. Токопровод может прокладываться открыто - на опорах или эстакадах, либо скрыто - в туннелях (рис. 17) и галереях.

Гибкий унифицированный симметричный токопровод 6-10 кВ наружного наполнения является по существу двухцепной ВЛ с расщепленными фазами (рис. 18, а). Каждая фаза состоит из 4, 6, 8 или 10 проводов марки А 600, располагаемых на поддерживающих зажимах по окружности диаметром 600 мм. С помощью специальной системы подвески на изоляторах все три фазы размещаются по вершинам треугольника и крепятся к опорам. Для предотвращения схлестывания фаз между собой в пролетах устанавливаются межфазовые изолирующие распорки.

У гибкого токопровода 35 кВ (рис. 18) фазы состоят из трех проводов, марки А 600, закреплены в кольца и посредствам несущего стального троса подвешены на изоляторах к опоре. Опоры гибких токопроводов, сооружаемые из железобетона или стали, устанавливаются через 50-100 м. Отпайки от токопроводов к электропотребителям выполняются шинами или голыми проводами.



Внутренними электропроводками называются провода и кабели с элсктроустановочными и электромонтажными изделиями, предназначенные для выполнения внутренних сетей в зданиях. Они выполняются открытыми и скрытыми, в большинстве случаев изолированными проводами, прокладываемыми на изоляторах или в трубах. Кабели прокладываются в каналах, полах или стенах. Иногда к внутренним электропроводкам относят также токопроводы (шинопроводы) цеховых сетей промышленных предприятий.

В Мой Мир

3) провода ВЛ должны располагаться, как правило, над подвеcным кабелем ЛС и ЛПВ (см. также 1.76, п. 4);
4) соединение проводов ВЛ в пролете пересечения с подвесным кабелем ЛС и ЛПВ не допускается. Сечение несущей жилы СИП должно быть не менее 35кв.мм. Провода ВЛ должны быть многопроволочными сечением не менее: алюминиевые - 35кв.мм, Сталеалюминиевые - 25 кв.мм; сечение жилы СИП со всеми несущими проводниками жгута - не менее 25кв.мм;
5) металлическая оболочка подвесного кабеля и трос, на котором подвешен кабель, должны быть заземлены на опорах, ограничивающих пролет пересечения;
6) расстояние по горизонтали от основания кабельной опоры ЛС и ЛПВ до проекции ближайшего провода ВЛ на горизонтальную плоскость должно быть не менее наибольшей высоты опоры пролета пересечения.

1.78. При пересечении ВЛИ с неизолированными проводами ЛС и ЛПВ должны соблюдаться следующие требования:
1) пересечение ВЛИ с ЛС и ЛПВ может выполняться в пролете и на опоре;
2) опоры ВЛИ, ограничивающие пролет пересечения с ЛС магистральных и внутризоновых сетей связи и с соединительными линиями СТС, должны быть анкерного типа. При пересечении всех остальных ЛС и ЛПВ на ВЛИ допускается применение промежуточных опор, усиленных дополнительной приставкой или подкосом;
3) несущая жила СИП или жгута со всеми несущими проводниками на участке пересечения должна иметь коэффициент запаса прочности на растяжение при наибольших расчетных нагрузках не менее 2,5;
4) провода ВЛИ должны располагаться над проводами ЛС и ЛПВ. На опорах, ограничивающих пролет пересечения, несущие провода СИП должны закрепляться натяжными зажимами. Провода ВЛИ допускается располагать под проводами ЛПВ. При этом провода ЛПВ на опорах, ограничивающих пролет пересечения, должны иметь двойное крепление;
5) соединение несущей жилы и несущих проводников жгута СИП, а также проводов ЛС и ЛПВ в пролетах пересечения не допускается.

1.79. При пересечении изолированных и неизолированных проводов ВЛ с неизолированными проводами ЛС и ЛПВ должны соблюдаться следующие требования:
1) пересечение проводов ВЛ с проводами ЛС, а также проводами ЛПВ напряжением выше 360 В должно выполняться только в пролете.
Пересечение проводов ВЛ с абонентскими и фидерными линиями ЛПВ напряжением до 360 В допускается выполнять на опорах ВЛ;
2) опоры ВЛ, ограничивающие пролет пересечения, должны быть анкерного типа;
3) провода ЛС, как стальные, так и из цветного металла, должны иметь коэффициент запаса прочности на растяжение при наибольших расчетных нагрузках не менее 2,2;
4) провода ВЛ должны располагаться над проводами ЛС и ЛПВ. На опорах, ограничивающих пролет пересечения, провода ВЛ должны иметь двойное крепление. Провода ВЛ напряжением 380/220 В и ниже допускается располагать под проводами ЛПВ и линий ГТС. При этом провода ЛПВ и линий ГТС на опорах, ограничивающих пролет пересечения, должны иметь двойное крепление;
5) соединение проводов ВЛ, а также проводов ЛС и ЛПВ в пролетах пересечения не допускается. Провода ВЛ должны быть многопроволочными с сечениями не менее: алюминиевые - 35кв.мм, Сталеалюминиевые - 25кв.мм.

1.80. При пересечении подземной кабельной вставки в ВЛ с неизолированными и изолированными проводами ЛС и ЛПВ должны соблюдаться следующие требования:
1) расстояние от подземной кабельной вставки в ВЛ до опоры ЛС и ЛПВ и ее заземлителя должно быть не менее 1м, а при прокладке кабеля в изолирующей трубе - не менее 0,5м;
2) расстояние по горизонтали от основания кабельной опоры ВЛ до проекции ближайшего провода ЛС и ЛПВ на горизонтальную плоскость должно быть не менее наибольшей высоты опоры пролета пересечения.

1.81. Расстояние по горизонтали между проводами ВЛИ и проводами ЛС и ЛПВ при параллельном прохождении или сближении должно быть не менее 1 м.
При сближении ВЛ с воздушными ЛС и ЛПВ расстояние по горизонтали между изолированными и неизолированными проводами ВЛ и проводами ЛС и ЛПВ должно быть не менее 2м. В стесненных условиях это расстояние допускается уменьшить до 1,5 м. Во всех остальных случаях расстояние между линиями должно быть не менее высоты наиболее высокой опоры ВЛ, ЛС и ЛПВ.
При сближении ВЛ с подземными или подвесными кабелями ЛС и ЛПВ расстояния между ними должны приниматься в соответствии с 1.77 пп. 1 и 5.

1.82. Сближение ВЛ с антенными сооружениями передающих радиоцентров, приемными радиоцентрами, выделенными приемными пунктами проводного вещания и местных радиоузлов не нормируется.

1.83. Провода от опоры ВЛ до ввода в здание не должны пересекаться с проводами ответвлений от ЛС и ЛПВ, и их следует располагать на одном уровне или выше ЛС и ЛПВ. Расстояние по горизонтали между проводами ВЛ и проводами ЛС и ЛПВ, телевизионными кабелями и спусками от радиоантенн на вводах должно быть не менее 0,5 м для СИП и 1,5 м для неизолированных проводов ВЛ.

1.84. Совместная подвеска подвесного кабеля сельской телефонной связи и ВЛИ допускается при выполнении следующих требований:
1) нулевая жила СИП должна быть изолированной;
2) расстояние от СИП до подвесного кабеля СТС в пролете и на опоре ВЛИ должно быть не менее 0,5 м;
3) каждая опора ВЛИ должна иметь заземляющее устройство, при этом сопротивление заземления должно быть не более 10 Ом;
4) на каждой опоре ВЛИ должно быть выполнено повторное заземление PEN-проводника;
5) несущий канат телефонного кабеля вместе с металлическим сетчатым наружным покровом кабеля должен быть присоединен к заземлителю каждой опоры отдельным самостоятельным проводником (спуском).

1.85. Совместная подвеска на общих опорах неизолированных проводов ВЛ, ЛС и ЛПВ не допускается.
На общих опорах допускается совместная подвеска неизолированных проводов ВЛ и изолированных проводов ЛПВ. При этом должны соблюдаться следующие условия:
1) номинальное напряжение ВЛ должно быть не более 380 В;
3) расстояние от нижних проводов ЛПВ до земли, между цепями ЛПВ и их проводами должно соответствовать требованиям действующих правил Минсвязи России;
4) неизолированные провода ВЛ должны располагаться над проводами ЛПВ; при этом расстояние по вертикали от нижнего провода ВЛ до верхнего провода ЛПВ должно быть на опоре не менее 1,5м, а в пролете - не менее 1,25м; при расположении проводов ЛПВ на кронштейнах это расстояние принимается от нижнего провода ВЛ, расположенного на той же стороне, что и провода ЛПВ.

1.86. На общих опорах допускается совместная подвеска СИП ВЛИ с неизолированными или изолированными проводами ЛС и ЛПВ. При этом должны соблюдаться следующие условия:
1) номинальное напряжение ВЛИ должно быть не более 380 В;
2) номинальное напряжение ЛПВ должно быть не более 360 В;
3) номинальное напряжение ЛС, расчетное механическое напряжение в проводах ЛС, расстояния от нижних проводов ЛС и ЛПВ до земли, между цепями и их проводами должны соответствовать требованиям действующих правил Минсвязи России;
4) провода ВЛИ до 1 кВ должны располагаться над проводами ЛС и ЛПВ; при этом расстояние по вертикали от СИП до верхнего провода ЛС и ЛПВ независимо от их взаимного расположения должно быть не менее 0,5 м на опоре и в пролете. Провода ВЛИ и ЛС и ЛПВ рекомендуется располагать по разным сторонам опоры.

1.87. Совместная подвеска на общих опорах неизолированных проводов ВЛ и кабелей ЛС не допускается. Совместная подвеска на общих опорах проводов ВЛ напряжением не более 380 В и кабелей ЛПВ допускается при соблюдении условий.
Оптические волокна ОКНН должны удовлетворять требованиям.

1.88. Совместная подвеска на общих опорах проводов ВЛ напряжением не более 380 В и проводов телемеханики допускается при соблюдении требований, приведенных в 1.85 и 1.86, а также если цепи телемеханики не используются как каналы проводной телефонной связи.

1.89. На опорах ВЛ (ВЛИ) допускается подвеска волоконнооптических кабелей связи (ОК):
неметаллических самонесущих (ОКСН);
неметаллических, навиваемых на фазный провод или жгут СИП (ОКНН).
Механические расчеты опор ВЛ (ВЛИ) с ОКСН и ОКНН должны производиться для исходных условий, указанных в 1.11 и 1.12.
Опоры ВЛ, на которых подвешивают ОК, и их закрепления в грунте должны быть рассчитаны с учетом дополнительных нагрузок, возникающих при этом.
Расстояние от ОКСН до поверхности земли в населенной и ненаселенной местностях должно быть не менее 5 м.
Расстояния между проводами ВЛ до 1 кВ и ОКСН на опоре и в пролете должны быть не менее 0,4м.

Страница 5 из 14

§ 2. Воздушные и кабельные линии электропередачи

Воздушные линии электропередачи.

Электрической воздушной линией ВЛ называется устройство, служащее для передачи электрической энергии по проводам, расположенным на открытом воздухе и прикрепленным при помощи изоляторов и арматуры к опорам. Воздушные линии электропередачи делятся на ВЛ напряжением до 1000 В и выше 1000 В.
При строительстве воздушных линий электропередачи объем земляных работ незначителен. Кроме того, они отличаются простотой эксплуатации и ремонта. Стоимость сооружения воздушной линии примерно на 25-30% меньше, чем стоимость кабельной линии такой же протяженности. Воздушные линии делятся на три класса:
класс I - линии с номинальным эксплуатационным напряжением 35 кВ при потребителях 1 и 2-й категорий и выше 35 кВ независимо от категорий потребителей;
класс II - линии с номинальным эксплуатационным напряжением от 1 до 20 кВ при потребителях 1 и 2-й категорий, а также 35 кВ при потребителях 3-й категории;
класс III - линии с номинальным эксплуатационным напряжением 1 кВ и ниже. Характерной особенностью воздушной линии напряжением до 1000 В является использование опор для одновременного крепления на них проводов радиосети, наружного освещения, телеуправления, сигнализации. Основными элементами воздушной линии являются опоры, изоляторы и провода.
Для линий напряжением 1 кВ применяют опоры двух видов: деревянные с железобетонными приставками и железобетонные.
Для деревянных опор используют бревна, пропитанные антисептиком, из леса II сорта - сосны, ели, лиственницы, пихты. Не пропитывать бревна можно при изготовлении опор из леса лиственных пород зимней рубки. Диаметр бревен в верхнем отрубе должен составлять не менее 15 см для одностоечных опор и не менее 14 см для двойных и А -образных опор. Допускается принимать диаметр бревен в верхнем отрубе не менее 12 см на ответвлениях, идущих к вводам в здания и сооружения. В зависимости от назначения и конструкции различают опоры промежуточные, угловые, ответвительные, перекрестные и концевые.
Промежуточные опоры на линии являются наиболее многочисленными, так как служат для поддержания проводов на высоте и не рассчитаны на усилия, которые создаются вдоль линии в случае обрыва проводов. Для восприятия этой нагрузки устанавливают анкерные промежуточные опоры, располагая их "ноги" вдоль оси линии. Для восприятия усилий, перпендикулярных линии, устанавливают анкерные промежуточные опоры, располагая "ноги" опоры поперек линии.
Анкерные опоры имеют более сложную конструкцию и повышенную прочность. Они также подразделяются на промежуточные, угловые, ответвительные и концевые, которые повышают общую прочность и устойчивость линии.
Расстояние между двумя анкерными опорами называется анкерным пролетом, а расстояние между промежуточными опорами - шагом опор.
В местах изменения направления трассы воздушной линии устанавливают угловые опоры.
Для электроснабжения потребителей, находящихся на некотором расстоянии от магистральной воздушной линии, используются ответвительные опоры, на которых закрепляются провода, подсоединенные к воздушной линии и к вводу потребителя электроэнергии.
Концевые опоры устанавливают в начале и конце воздушной линии специально для восприятия односторонних осевых усилий.
Конструкции различных опор показаны на рис. 10.
При проектировании воздушной линии количество и тип опор определяют в зависимости от конфигурации трассы, сечения проводов, климатических условий района, степени населенности местности, рельефности трассы и других условий.
Для сооружений ВЛ напряжением выше 1 кВ применяют преимущественно железобетонные и деревянные антисептированные опоры на железобетонных приставках. Конструкции этих опор унифицированы.
Металлические опоры используют главным образом в качестве анкерных опор на воздушных линиях напряжением выше 1 кВ.
На опорах ВЛ расположение проводов может быть любым, только нулевой провод в линиях до 1 кВ размещают ниже фазных. При подвеске на опорах проводов наружного освещения их располагают ниже нулевого провода.
Провода ВЛ напряжением до 1 кВ следует подвешивать на высоте не менее 6 м от земли с учетом стрелы провеса.
Расстояние по вертикали от земли до точки наибольшего провисания провода называется габаритом провода ВЛ над землей.
Провода воздушной линии могут по трассе сближаться с другими линиями, пересекаться с ними и проходить на расстоянии от объектов.
Габаритом сближения проводов ВЛ называется допустимое наименьшее расстояние от проводов линии до объектов (зданий, сооружений), расположенных параллельно трассе ВЛ, а габаритом пересечения - кратчайшее расстояние по вертикали от объекта, расположенного под линией (пересекаемого) до провода ВЛ.

Рис. 10. Конструкции деревянных опор воздушных линий электропередачи:
а - на напряжение ниже 1000 В, б - на напряжение 6 и 10 кВ; 1 - промежуточная, 2 - угловая с подкосом, 3 - угловая с оттяжкой, 4 - анкерная

Изоляторы.

Крепление проводов воздушной линии на опорах осуществляется при помощи изоляторов (рис. 11), насаживаемых на крюки и штыри (рис. 12).
Для воздушных линий напряжением 1000 В и ниже используют изоляторы ТФ-4, ТФ-16, ТФ-20, НС-16, НС-18, АИК-4, а для ответвлений - ШО-12 при сечении проводов до 4 мм 2 ; ТФ-3, АИК-3 и ШО-16 при сечении проводов до 16 мм 2 ; ТФ-2, АИК-2, ШО-70 и ШН-1 при сечении проводов до 50 мм 2 ; ТФ-1 и АИК-1 при сечении проводов до 95 мм 2 .
Для крепления проводов воздушных линий напряжением выше 1000 В применяются изоляторы ШС, ШД, УШЛ, ШФ6-А и ШФ10-А и подвесные изоляторы.
Все изоляторы, кроме подвесных, плотно навертываются на крюки и штыри, на которые предварительно наматывают паклю, пропитанную суриком или олифой, или надевают специальные пластмассовые колпачки.
Для ВЛ напряжением до 1000 В применяются крюки КН-16, а выше 1000 В - крюки КВ-22, изготовленные из круглой стали диаметром соответственно 16 и 22 мм 2 . На траверсах опор тех же воздушных линий напряжением до 1000 В при креплении проводов используются штыри ШТ-Д - для деревянных траверс и ШТ-С - для стальных.
При напряжении воздушных линий более 1000 В на траверсах опор монтируют штыри ЩУ-22 и ШУ-24.
По условиям механической прочности для воздушных линий напряжением до 1000 В используются однопроволочные и много проволочные провода сечением, не менее: алюминиевые - 16 сталеалюминиевые и биметаллические -10, стальные многопроволочные - 25, стальные однопроволочные - 13 мм (диаметр 4 мм).

На воздушной линии напряжением 10 кВ и ниже, проходящей в ненаселенной местности, с расчетной толщиной образующегося на поверхности провода слоя льда (стенка гололеда) до 10 мм, в пролетах без пересечений с сооружениями допускается применение однопроволочных стальных проводов при наличии специального указания.
В пролетах, которые пересекают трубопроводы, не предназначенные для горючих жидкостей и газов, допускается применение стальных проводов сечением 25 мм 2 и более. Для воздушных линий напряжением выше 1000 В применяют только многопроволочные медные провода сечением не менее 10 мм 2 и алюминиевые - сечением не менее 16 мм 2 .
Соединение проводов друг с другом (рис. 62) выполняется скруткой, в соединительном зажиме или в плашечных зажимах.
Крепление проводов ВЛ и изоляторов осуществляется вязальной проволокой одним из способов, показанных на рис.13.
Стальные провода привязывают мягкой стальной оцинкованной проволокой диаметром 1,5 - 2 мм, а алюминиевые и сталеалюминиевые - алюминиевой проволокой диаметром 2,5 - 3,5 мм (можно использовать проволоку многопроволочных проводов).
Алюминиевые и сталеалюминиевые провода в местах крепления предварительно обматывают алюминиевой лентой для предохранения их от повреждений.
На промежуточных опорах провод крепят преимущественно на головке изолятора, а на угловых опорах - на шейке, располагая его с внешней стороны угла, oбpaзуемого проводами линии. Провода на головке изолятора крепят (рис. 13, а) двумя отрезками вязальной проволоки. Проволоку закручивают вокруг головки изолятора так, чтобы концы ее разной длины находились с обеих сторон шейки изолятора, а затем два коротких конца обматывают 4 - 5 раз вокруг провода, а два длинных - переносят через головку изолятора и тоже несколько раз обматывают вокруг провода. При креплении провода на шейке изолятора (рис. 13, б) вязальная проволока охватывает петлей провод и шейку изолятора, затем один конец вязальной проволоки обматывают вокруг провода в одном направлении (сверху вниз), а другой конец - в противоположном направлении (снизу вверх).

На анкерных и концевых опорах провод крепят заглушкой на шейке изолятора. В местах перехода ВЛ через железные дороги и трамвайные пути, а также на пересечениях с другими силовыми линиями и линиями связи применяют двойное крепление проводов.
Все деревянные детали при сборке опор плотно подгоняют друг к другу. Зазор в местах врубок и стыков не должен превышать 4 мм.
Стойки и приставки к опорам воздушных линий выполняют таким образом, чтобы древесина в месте сопряжения не имела сучков и трещин, а стык был совершенно плотным, без просветов. Рабочие поверхности врубок должны быть сплошного пропила (без долбежки древесины).
Отверстия в бревнах просверливают. Запрещается прожигание отверстий нагретыми стержнями.
Бандажи для сопряжения приставок с опорой изготовляют из мягкой стальной проволоки диаметром 4 - 5 мм. Все витки бандажа должны быть равномерно натянуты и плотно прилегать друг к другу. В случае обрыва одного витка весь бандаж следует заменить новым.
При соединении проводов и тросов ВЛ напряжением выше 1000 В в каждом пролете допускается не более одного соединения на каждый провод или трос.
При использовании сварки для соединения проводов не должно быть пережога проволок наружного повива или нарушения сварки при перегибе соединенных проводов.
Металлические опоры, выступающие металлические части железобетонных опор и все металлические детали деревянных и железобетонных опор ВЛ защищают антикоррозионными покрытиями, т.е. красят. Места монтажной сварки металлических опор огрунтовывают и окрашивают на ширину 50 - 100 мм вдоль сварного шва сразу же после сварных работ. Части конструкций, которые подлежат бетонированию, покрываются цементным молоком.



Рис. 14. Способы крепления проводов вязкой к изоляторам:
а - головная вязка, б - боковая вязка

В процессе эксплуатации воздушные линии электропередачи периодически осматривают, а также производят профилактические измерения и проверки. Величину загнивания древесины измеряют на глубине 0,3 - 0,5 м. Опора или приставка считается непригодной для дальнейшей эксплуатации, если глубина загнивания по радиусу бревна составляет более 3 см при диаметре бревна более 25 см.
Внеочередные осмотры ВЛ проводятся после аварий, ураганов, при пожаре вблизи линии, во время ледоходов, гололедов, морозе ниже -40 °С и т. п.
При обнаружении на проводе обрыва нескольких проволок общим сечением до 17% сечения провода место обрыва перекрывают ремонтной муфтой или бандажом. Ремонтную муфту на сталеалюминиевом проводе устанавливают при обрыве до 34% алюминиевых проволок. Если оборвано большее количество жил, провод должен быть разрезан и соединен с помощью соединительного зажима.
Изоляторы могут иметь пробои, ожоги глазури, оплавление металлических частей и даже разрушение фарфора. Это происходит в случае пробоя изоляторов электрической дугой, а также при ухудшении их электрических характеристик в результате старения в процессе эксплуатации. Часто пробои изоляторов происходят из-за сильного загрязнения их поверхности и при напряжениях, превышающих рабочее. Данные о дефектах, обнаруженных при осмотрах изоляторов, заносят в журнал дефектов, и на основе этих данных составляют планы ремонтных работ воздушных линий.

Кабельные линии электропередачи.

Кабельной линией называется линия для передачи электрической энергии или отдельных импульсов, состоящая из одного или нескольких параллельных кабелей с соединительными и концевыми муфтами (заделками) и крепежными деталями.
Над подземными кабельными линиями устанавливают охранные зоны, размер которых зависит от напряжения этой линии. Так, для кабельных линий напряжением до 1000 В охранная зона имеет размер площадки по 1 м с каждой стороны от крайних кабелей. В городах под тротуарами линия должна проходить на расстоянии 0,6 м от зданий и сооружений и 1 м от проезжей части.
Для кабельных линий напряжением выше 1000 В охранная зона имеет размер по 1 м с каждой стороны от крайних кабелей.
Подводные кабельные линии напряжением до 1000 В и выше имеют охранную зону, определяемую параллельными прямыми на расстоянии 100 м от крайних кабелей.
Трассу кабеля выбирают с учетом наименьшего его расхода и обеспечения сохранности от механических повреждений, коррозии, вибрации, перегрева и возможности повреждений соседних кабелей при возникновении короткого замыкания на одном из них.
При прокладке кабелей необходимо соблюдать предельно допустимые радиусы их изгиба, превышение которых приводит к нарушению целостности изоляции жил.
Прокладка кабеля в земле под зданиями, а также через подвальные и складские помещения запрещается.
Расстояние между кабелем и фундаментами зданий должно составлять не менее 0,6 м.
При прокладке кабеля в зоне насаждений расстояние между кабелем и стволами деревьев должно быть не менее 2 м, а в зеленой зоне с кустарниковыми посадками допускается 0,75 м. В случае прокладки кабеля параллельно теплопроводу расстояние в свету от кабеля до стенки канала теплопровода должно быть не менее 2 м, до оси пути железной дороги - не менее 3,25 м, а для электрифицированной дороги - не менее 10,75 м.
При прокладке кабеля параллельно трамвайным путям расстояние между кабелем и осью трамвайного пути должно составлять не менее 2,75 м.
В местах пересечения железных и автомобильных дорог, а также трамвайных путей кабели прокладывают в туннелях, блоках или трубах по всей ширине зоны отчуждения на глубине не менее 1 м от полотна дороги и не менее 0,5 м от дна водоотводных канав, а при отсутствии зоны отчуждения кабели прокладывают непосредственно на участке пересечения или на расстоянии 2 м по обе стороны от полотна дороги.
Кабели укладывают "змейкой" с запасом, равным 1 - 3 % его длины, чтобы исключить возможность возникновения опасных механических напряжений при смещениях почвы и температурных деформациях. Укладывать конец кабеля в виде колец запрещается.

Количество соединительных муфт на кабеле должно быть наименьшим, поэтому кабель прокладывают полными строительными длинами. На 1 км кабельных линий может приходиться не более четырех муфт для трехжильных кабелей напряжением до 10 кВ сечением до 3х95 мм 2 и пяти муфт для сечений от 3х120 до 3x240 мм 2 . Для одножильных кабелей допускается не более двух муфт на 1 км кабельных линий.
Для соединений или оконцеваний кабеля производят разделку концов, т. е. ступенчатое удаление защитных и изоляционных материалов. Размеры разделки определяются конструкцией муфты, которую будут использовать для соединения кабеля, напряжением кабеля и сечением его токопроводящих жил.
Готовая разделка конца трехжильного кабеля с бумажной изоляцией показана на рис. 15.
Соединение концов кабеля напряжением до 1000 В осуществляйся в чугунных (рис. 16) или эпоксидных муфтах, а напряжением 6 и 10 кВ - в эпоксидных (рис. 17) или свинцовых муфтах.



Рис. 16. Соединительная чугунная муфта:
1 - верхняя муфта, 2 - подмотка из смоляной ленты, 3 - фарфоровая распорка, 4 - крышка, 5 - стягивающий болт, 6 -провод заземления, 7 - нижняя полумуфта, 8 - соединительная гильза

Соединение токопроводящих жил кабеля напряжением до 1000 В выполняют опрессовкой в гильзе (рис. 18). Для этого подбирают по сечению соединяемых токопроводящих жил гильзу, пуансон и матрицу, а также механизм для опрессовки (пресс-клещи, гидропресс и др.), зачищают до металлического блеска внутреннюю поверхность гильзы стальным ершом (рис, 18, а), а соединяемые жилы - щеткой - на кардоленты (рис. 18, б). Скругляют многопроволочные секторные жилы кабеля универсальными плоскогубцами. Вводят жилы в гильзу (рис. 18, в) так, чтобы их торцы соприкасались и располагались в середине гильзы.



Рис. 17. Соединительная эпоксидная муфта:
1 - проволочный бандаж, 2 - корпус муфты, 3 - бандаж из суровых ниток, 4 - распорка, 5 - подмотка жилы, 6 - провод заземления, 7 - соединение жил, 8 - герметизирующая подмотка



Рис. 18. Соединение медных жил кабеля опрессовкой:

а - зачистка внутренней поверхности гильзы стальным проволочным ершом, б - зачистка жилы щеткой из кардоленты, в - установка гильзы на соединяемых жилах, г - опрессовка гильзы в прессе, д - готовое соединение; 1 - медная гильза, 2 - ерш, 3 - щетка, 4 - жила, 5 - пресс
Устанавливают гильзу заподлицо в ложе матрицы (рис. 18, г), затем опрессовывают гильзу двумя вдавливаниями, по одному на каждую жилу (рис. 18, д). Вдавливание производят таким образом, чтобы шайба пуансона в конце процесса упиралась в торец (плечики) матрицы. Остаточную толщину кабеля (мм) проверяют с помощью специального штангенциркуля или кронциркуля (величина Н на рис. 19):
4,5 ± 0,2 - при сечении соединяемых жил 16 - 50 мм 2
8,2 ± 0,2 - при сечении соединяемых жил 70 и 95 мм 2
12,5 ± 0,2 - при сечении соединяемых жил 120 и 150 мм 2
14,4 ± 0,2 - при сечении соединяемых жил 185 и 240 мм 2
Качество спрессованных контактов кабеля проверяют внешним осмотром. При этом обращают внимание на лунки вдавливания, которые должны располагаться соосно и симметрично относительно середины гильзы или трубчатой части наконечника. В местах вдавливания пуансона не должно быть надрывов или трещин.
Чтобы обеспечить соответствующее качество опрессовки кабелей, необходимо выполнять следующие условия производства работ:
применять наконечники и гильзы, сечение которых соответствует конструкции жил кабеля, подлежащего оконцеванию или соединению;
использовать матрицы и пуансоны, соответствующие типоразмерам наконечников или гильз, применяемых при опрессовке;
не изменять сечение жилы кабеля для облегчения ввода жилы в наконечник или гильзу путем удаления одной из проволок;

не производить опрессование без предварительной зачистки и смазки кварцево-вазелиновой пастой контактных поверхностей наконечников и гильз на алюминиевых жилах; заканчивать опрессовку не раньше, чем шайба пуансона подойдет вплотную к торцу матрицы.
После соединения жил кабеля снимают металлический поясок между первым и вторым кольцевыми надрезами оболочки и на край находившейся под ней поясной изоляции накладывают бандаж из 5 - 6 витков суровых ниток, после чего устанавливают между жилами распорные пластины так, чтобы жилы кабеля удерживались на определенном расстоянии друг от друга и от корпуса муфты.
Укладывают концы кабеля в муфту, предварительно намотав I на кабель в местах входа и выхода его из муфты 5 - 7 слоев смоляной ленты, а затем скрепляют обе половинки муфты болтами. Заземляющий проводник, припаянный к броне и оболочке кабеля заводят под крепежные болты и таким образом прочно закрепляют его на муфте.
Операции разделки концов кабелей напряжением 6 и 10 кВ в свинцовой муфте мало чем отличаются от аналогичных операций соединения их в чугунной муфте.
Кабельные линии могут обеспечивать надежную и долговечную работу, но только при условии соблюдения технологии монтажных работ и всех требований правил технической эксплуатации.
Качество и надежность смонтированных кабельных муфт и заделок могут быть повышены, если применять при монтаже комплект необходимого инструмента и приспособлений для разделки кабеля и соединения жил, разогрева кабельной массы и т. п. Большое значение для повышения качества выполняемых работ имеет квалификация персонала.
Для кабельных соединений применяются комплекты бумажных роликов, рулонов и бобин хлопчатобумажной пряжи, но не допускается, чтобы они имели складки, надорванные и измятые места, были загрязнены.
Такие комплекты поставляют в банках в зависимости от размера муфт по номерам. Банка на месте монтажа перед употреблением должна быть открыта и разогрета до температуры 70 - 80 °C. Разогретые ролики и рулоны проверяют на отсутствие влаги путем погружения бумажных лент в разогретый до температуры 150 °С парафин. При этом не должно наблюдаться потрескивания и выделения пены. Если влага обнаружится, комплект роликов и рулонов бракуют.
Надежность кабельных линий при эксплуатации поддерживают выполнением комплекса мероприятий, включая контроль за нагревом кабеля, осмотры, ремонты, профилактические испытания.
Для обеспечения длительной работы кабельной линии необходимо следить за температурой жил кабеля, так как перегрев изоляции вызывает ускорение старения и резкое сокращение срока службы кабеля. Максимально допустимая температура токопроводящих жил кабеля определяется конструкцией кабеля. Так, для кабелей напряжением 10 кВ с бумажной изоляцией и вязкой нестекающей пропиткой допускается температура не более 60 °С; для кабелей напряжением 0,66 - 6 кВ с резиновой изоляцией и вязкой нестекающей пропиткой - 65 °С; для кабелей напряжением до 6 кВ с пластмассовой (из полиэтилена, самозатухающего полиэтилена и поливинилхлоридного пластиката) изоляцией - 70 °С; для кабелей напряжением 6 кВ с бумажной изоляцией и обедненной пропиткой - 75 °С; для кабелей напряжением 6 кВ с пластмассовой (из вулканизированного или самозатухающего полиэтилена или бумажной изоляцией и вязкой или обедненной пропиткой - 80 °С.
Длительно допустимые токовые нагрузки на кабели с изоляцией из пропитанной бумаги, резины и пластмассы выбирают по действующим ГОСТам. Кабельные линии напряжением 6 - 10 кВ, несущие нагрузки меньше номинальных, могут быть кратковременно перегруженными на величину, которая зависит от вида прокладки. Так, например, кабель, проложенный в земле и имеющий коэффициент предварительной нагрузки 0,6, может быть перегружен на 35% в течение получаса, на 30% - 1 ч и на 15% - 3 ч, а при коэффициенте предварительной нагрузки 0,8 - на 20% в течение получаса, на 15% - 1 ч и на 10% - 3 ч.
Для кабельных линий, находящихся в эксплуатации более 15 лет, перегрузка снижается на 10%.
Надежность работы кабельной линии в значительной степени зависит от правильной организации эксплуатационного надзора за состоянием линий и их трасс путем периодических осмотров. Плановые осмотры позволяют выявить различные нарушения на кабельных трассах (производство земляных работ, складирование грузов, посадка деревьев и т. д.), а также трещины и сколы на изоляторах концевых муфт, ослабление их креплений, наличие птичьих гнезд и т. д.
Большую опасность для целости кабелей представляют собой раскопки земли, производимые на трассах или вблизи них. Организация, эксплуатирующая подземные кабели, должна выделять наблюдающего при производстве раскопок с целью исключения повреждений кабеля.
Места производства земляных работ по степени опасности повреждения кабелей делятся на две зоны:
I зона - участок земли, расположенный на трассе кабеля или на расстоянии до 1 м от крайнего кабеля напряжением выше 1000 В;
II зона - участок земли, расположенный от крайнего кабеля на расстоянии свыше 1 м.
При работе в I зоне запрещается:
применение экскаваторов и других землеройных машин;
использование ударных механизмов (клин-бабы, шар-бабы и др.) на расстоянии ближе 5 м;
применение механизмов для раскопки грунта (отбойных молотков, электромолотков и др.) на глубину выше 0,4 м при нормальной глубине заложения кабеля (0,7 - 1 м); производство земляных работ в зимнее время без предварительного отогрева грунта;
выполнение работ без надзора представителем эксплуатирующей кабельную линию организации.
Чтобы своевременно выявить дефекты изоляции кабеля, соединительных и концевых муфт и предупредить внезапный выход кабеля из строя или разрушение его токами коротких замыканий, проводят профилактические испытания кабельных линий повышенным напряжением постоянного тока.

Воздушной линией электропередачи (ВЛ) называют устройство для передачи и распределения электроэнергии по проводам, находящимся на открытом воздухе c прикрепленным при помощи изоляторов и арматуры в опорам или кронштейнам инженерных сооружений (мостов, путепроводов и т. д.). Устройство ВЛ, ее проектирование и строительство должны соответствовать «Правилам устройства электроустановок» (ПУЭ), являющимся обязательными для всех линий электропередачи, кроме специальных (например, контактных сетей трамвая, троллейбуса, железной дороги и др.)

Классификация и режимы работы ВЛ. Воздушные линии электропередачи, как правило, предназначены для передачи переменного трехфазного тока и по назначению делятся на:

– сверхдальние напряжением 500 кВ и выше, служащие в основном для связи между отдельными энергосистемами;
– магистральные напряжением 220 и 330 кВ, служащие для передачи энергии от мощных электростанций, а также для связи между энергосистемами и объединения электростанций внутри энергосистем (обычно соединяют электростанции с распределительными пунктами);
– распределительные напряжением 35, ПО и 150 кВ, служащие для электроснабжения предприятий и населенных пунктов крупных районов (соединяют распределительные пункты с потребителями и представляют собой разветвленные сети с трансформаторными подстанциями);
– линии электропередачи 20 кВ и ниже, служащие для подвода электроэнергии к потребителям.
Потребители электроэнергии по надежности электроснабжения делятся на три категории:
– к первой относят потребителей, нарушение электроснабжения которых может привести к опасности для жизни людей, повреждению оборудования, массовому браку продукции, нарушению важных элементов городского хозяйства;
– ко второй - потребителей, перерыв электроснабжения которых приводит к массовому недоотпуску продукции, простою оборудования и рабочих, нарушению нормальной деятельности значительной части городского населения;
– к третьей - остальных потребителей.

По напряжению воздушные линии электропередачи «Правилами устройства электроустановок» делятся на две группы: ВЛ напряжением до 1000 В (низковольтные) и ВЛ напряжением выше 1000 В (высоковольтные). Для каждой группы линий установлены технические требования их устройства. Номинальное линейное напряжение линий трехфазного тока регламентировано ГОСТ 721-62 и может иметь следующие значения: 750, 500, 330, 220, 150, 110, 35, 20, 10, 6 и 3 кВ, а также 660, 380 и 220 В.

По электрическому режиму работы линии делятся на. линии с изолированной нейтралью, когда общая точка обмоток (нейтраль) не присоединена к заземляющему устройству или присоединена к нему через аппараты, имеющие большое сопротивление, и с глухозаземленной нейтралью, когда нейтраль генератора или трансформатора наглухо соединена с землей.

В сетях с изолированной нейтралью изоляция линии должна быть не менее величины линейного напряжения, так как при замыкании одной фазы на землю напряжение двух других фаз относительно земли становится равным линейному. В сетях с глухозаземленной нейтралью при повреждении одной фазы происходит короткое замыкание через землю и защита линии отключает поврежденный участок. При этом перенапряжения фаз не происходит и изоляцию линии выбирают по фазному напряжению. Недостатком этих сетей является большая величина тока замыкания на землю и отключение линии при однофазном замыкании на землю. В нашей стране сети с глухозаземленной нейтралью применяют в системах напряжением до 1000 В и от 110 кВ и выше.

В зависимости от механического состояния различают следующие режимы работы ВЛ:
– нормальный - провода и тросы не оборваны;
– аварийный - провода и тросы оборваны полностью или частично;
– монтажный - в условиях монтажа опор, проводов и тросов.

Механические нагрузки на элементы ВЛ в большой степени зависят от климатических условий района и характера местности, по которой проходит линия. При проектировании ВЛ за основу берут наибольшее значение величины скорости ветра и толщины стенки гололеда, образующегося на проводах, наблюдаемые в данном районе 1 раз в 15 лет для ВЛ напряжением 500 кВ и 1 раз в 10 лет для ВЛ напряжением 6-330 кВ.

Местность, по которой проходит ВЛ, в зависимости от доступности для людей, транспорта и сельскохозяйственных машин, делится согласно ПУЭ на три категории:

– к населенной местности относят территорию городов, поселков, дере-вень, промышленных и сельскохозяйственных предприятий, портов, пристаней, железнодорожных станций, парков, бульваров, пляжей с учетом границ их развития на ближайшие 10 лет;

– к ненаселенной - незастроенную территорию, частично посещаемую людьми и доступную для транспорта и сельскохозяйственных машин (ненаселенной местностью считают также огороды, сады и местности с отдельными, редко стоящими строениями и временными сооружениями) ;

– к труднодоступной - территорию, недоступную для транспорта и сельскохозяйственных машин.
Устройство и основные элементы ВЛ. Воздушные линии электропередачи состоят из опорных конструкций (опоры и основания), проводов, изоляторов и линейной арматуры. Кроме того, в состав ВЛ входят устройства, необходимые для обеспечения бесперебойного электроснабжения потребителей и нормальной работы линии: грозозащитные тросы, разрядники, заземления, а также вспомогательное оборудование для нужд эксплуатации (устройства высокочастотной связи, емкостного отбора мощности и др.)

Опоры воздушной линии электропередачи поддерживают провода на заданном расстоянии между собой и от поверхности земли Горизонтальные расстояния между центрами двух опор, на которых подвешены провода, называют пролетом, или длиной пролета. Различают переходной, промежуточный и анкерный пролеты. Анкерный пролет обычно состоит из нескольких промежуточных.

Углом поворота линии называют угол между направлениями линии в смежных пролетах.
Вертикальное расстояние hг (рисунок 1, а) между низшей точкой провода в пролете до пересекаемых инженерных сооружений или до поверхности земли или воды называют габаритом провода.

Рисунок 1 – Габарит (а) и стрела провеса (б) проводов:
F, f - стрела провеса проводов; hг-габарит провода от земли, А, В - точки подвеса провода

Стрелой провеса f провода называют вертикальное расстояние между низшей точкой провода в пролете и горизонтальной прямой, соединяющей точки подвеса провода на опорах. Если высота точек крепления разная, стрела провеса рассматривается относительно высшей и низшей точек крепления провода (F и f на рисунке 1,б).
Тяжением называют усилие, с которым натягивают и закрепляют на опорах провод или трос. Тяжение изменяется в зависимости от силы ветра, температуры окружающего воздуха, толщины гололеда на проводах и может быть нормальным или ослабленным.

Запасом прочности, или коэффициентом запаса элементов воздушной линии электропередачи, называют отношение минимальной расчетной нагрузки, разрушающей данный элемент, к величине фактической нагрузки в наиболее тяжелых условиях.

Механическим напряжением материала, называют нагрузку на элементы ВЛ, отнесенную к единице площади их рабочего сечения. Например, тяжение провода, отнесенное к его поперечному сечению, определяет механическое напряжение материала провода.

Временным сопротивлением называют максимально допустимое механическое напряжение материала, после превышения которого начинается разрушение изделия.

Вконтакте

Воздушные линии (ВЛ) служат для передачи электроэнергии по проводам, проложенным на открытом воздухе и закрепленным на специальных опорах или кронштейнах инженерных сооружений с помощью изоляторов и арматуры. Основными конструктивными элементами ВЛ являются провода, защитные тросы, опоры, изоляторы и линейная арматура. В городских условиях ВЛ получили наибольшее распространение на окраинах, а также в районах застройки до пяти этажей. Элементы ВЛ должны обладать достаточной механической прочностью, поэтому при их проектировании, кроме электрических, делают и механические расчеты для определения не только материала и сечения проводов, но и типа изоляторов и опор, расстояния между проводами и опорами и т. д.

В зависимости от назначения и места установки различают следующие виды опор:

промежуточные, предназначенные для поддержания проводов на прямых участках линий. Расстояние между опорами (пролеты) составляет 35-45 м для напряжения до 1000 В и около 60 м для напряжения 6-10 кВ. Крепление проводов здесь производится с помощью штыревых изоляторов (не наглухо);

анкерные, имеющие более жесткую и прочную конструкцию, чтобы воспринимать продольные усилия от разности тяжения по проводам и поддерживать (в случае обрыва) все оставшиеся в анкерном пролете провода. Эти опоры устанавливаются также на прямых участках трассы (с пролетом около 250 м для напряжения 6-10 кВ) и на пересечениях с различными сооружениями. Крепление проводов на анкерных опорах производится наглухо к подвесным или штыревым изоляторам;

концевые, устанавливаемые в начале и в конце линии. Они являются разновидностью анкерных опор и должны выдерживать постоянно действующее одностороннее тяжение проводов;

угловые, устанавливаемые в местах изменения направления трассы. Эти опоры укрепляются подкосами или металлическими оттяжками;

специальные или переходные, устанавливаемые в местах пересечений ВЛ с сооружениями или препятствиями (реками, железными дорогами и т. п.). Они отличаются от других опор данной линии по высоте или конструкции.

Для изготовления опор применяют дерево, металл или железобетон.

Деревянные опоры в зависимости от конструкции могут быть:

одинарными;

А-образными, состоящими из двух стоек, сходящихся у вершины и расходящихся у основания;

трехногими, состоящими из трех сходящихся к вершине и расходящихся у основания стоек;

П-образными, состоящими из двух стоек, соединенных вверху горизонтальной траверсой;

АП-образными, состоящими из двух А-образных опор, соединенных горизонтальной траверсой;

составными, состоящими из стойки и приставки (пасынка), присоединяемой к ней бандажом из стальной проволоки.

Для увеличения срока службы деревянные опоры пропитывают антисептиками, значительно замедляющими процесс гниения древесины. В эксплуатации антисептирование проводится путем наложения антисептического бандажа в местах, подверженных гниению, с промазыванием антисептической пастой всех трещин, мест сопряжений и врубок.

Металлические опоры изготавливают из труб или профильной стали, железобетонные - в виде полых круглых или прямоугольных стоек с уменьшающимся сечением к вершине опоры.

Для крепления проводов ВЛ к опорам применяются изоляторы и крюки, а для крепления к траверсе - изоляторы и штыри. Изоляторы могут быть фарфоровыми или стеклянными штыревого или подвесного (в местах анкерного крепления) исполнения (рис. 1, а-в). Их прочно навертывают на крюки или штыри с помощью специальных полиэтиленовых колпачков или пакли, пропитанной суриком или олифой.

Рисунок 1. а - штыревой 6-10 кВ; б - штыревой 35 кВ; в - подвесной; г, д - стержневые полимерные

Изоляторы воздушных линий изготавливаются из фарфора или закаленного стекла - материалов, обладающих высокой механической и электрической прочностью и стойкостью к атмосферным воздействиям. Существенным достоинством стеклянных изоляторов является то, что при повреждении закаленное стекло рассылается. Это облегчает нахождение поврежденных изоляторов на линии.

По конструкции изоляторы разделяют на штыревые и подвесные.

Штыревые изоляторы применяются на линиях напряжением до 1 кВ, 6-10 кВ и, редко, 35 кВ (рис. 1, а, б). Они крепятся к опорам при помощи крюков или штырей.

Подвесные изоляторы (рис. 1, в) используются на ВЛ напряжением 35 кВ и выше. Они состоят из фарфоровой или стеклянной изолирующей части 1, шапки из ковкого чугуна 2, металлического стержня 3 и цементной связки 4. Подвесные изоляторы собирают в гирлянды, которые бывают поддерживающими (на промежуточных опорах) и натяжными (на анкерных опорах). Число изоляторов в гирлянде определяется напряжением линии; 35 кВ - 3-4 изолятора, 110 кВ - 6-8.

Применяются также полимерные изоляторы (рис. 1, г). Они представляют собой стержневой элемент из стеклопластика, на котором размещено защитное покрытие с ребрами из фторопласта или кремнийорганической резины:

К проводам ВЛ предъявляются требования достаточной механической прочности. Они могут быть одно- или многопроволочными. Однопроволочные провода из стали применяются исключительно для линий напряжением до 1000 В; многопроволочные провода из стали, биметалла, алюминия и его сплавов получили преимущественное распространение благодаря повышенной механической прочности и гибкости. Чаще всего на ВЛ напряжением до 6-10 кВ используются алюминиевые многопроволочные провода марки А и стальные оцинкованные провода марки ПС.

Сталеалюминевые провода (рис. 2, в) применяют на ВЛ напряжением выше 1 кВ. Они выпускаются с разным соотношением сечений алюминиевой и стальной частей. Чем меньше это соотношение, тем более высокую механическую прочность имеет провод и поэтому используется на территориях с более тяжелыми климатическими условиями (с большей толщиной стенки гололеда). В марке сталеалюминевых проводов указываются сечения алюминиевой и стальной частей, например, АС 95/16.

Рисунок 2. а - общий вид многопроволочного провода; б - сечение алюминиевого провода; в - сечение сталеалюминевого провода

Провода из сплавов алюминия (АН - не термообработанный, АЖ - термообработанный) имеют большую, по сравнению с алюминиевыми, механическую прочность и практически такую же электрическую проводимость. Они используются на ВЛ напряжением выше 1 кВ в районах с толщиной стенки гололеда до 20 мм.

Провода располагают различными способами. На одноцепных линиях их, как правило, располагают треугольником.

В настоящее время широко используются так называемые самонесущие изолированные провода (СИП) напряжением до 10 кВ. В линии напряжением 380 В провода состоят из несущего неизолированного провода, являющегося нулевым, трех изолированных линейных проводов, одного изолированного провода наружного освещения. Линейные изолированные провода навиты вокруг несущего нулевого провода. Несущий провод является сталеалюминевым, а линейные - алюминиевыми. Последние покрыты светостойким термостабилизированным (сшитым) полиэтиленом (провод типа АПВ). К преимуществам ВЛ с изолированными проводами перед линиями с голыми проводами можно отнести отсутствие изоляторов на опорах, максимальное использование высоты опоры для подвески проводов; нет необходимости в обрезке деревьев в зоне прохождения линии.

Для ответвлений от линий напряжением до 1000 В к вводам в здания используются изолированные провода марки АПР или АВТ. Они имеют несущий стальной трос и изоляцию, стойкую к атмосферным воздействиям.

Крепление проводов к опорам производится различными способами, в зависимости от места их расположения на изоляторе. На промежуточных опорах провода крепят к штыревым изоляторам зажимами или вязальной проволокой из того же материала, что и провод, причем последний в месте крепления не должен иметь изгибов. Провода, расположенные на головке изолятора, крепятся головной вязкой, на шейке изолятора - боковой вязкой.

На анкерных, угловых и концевых опорах провода напряжением до 1000 В крепят закручиванием проводов так называемой «заглушкой», провода напряжением 6-10 кВ - петлей. На анкерных и угловых опорах, в местах перехода через железные дороги, проезды, трамвайные пути и на пересечениях с различными силовыми линиями и линиями связи применяют двойной подвес проводов.

Соединение проводов производят плашечными зажимами, обжатым овальным соединителем, овальным соединителем, скрученным специальным приспособлением. В некоторых случаях применяют сварку с помощью термитных патронов и специального аппарата. Для однопроволочных стальных проводов можно применять сварку внахлестку с использованием небольших трансформаторов. В пролетах между опорами не допускается иметь более двух соединений проводов, а в пролетах пересечений ВЛ с различными сооружениями соединение проводов не допускается. На опорах соединение должно быть выполнено так, чтобы оно не испытывало механических усилий.

Линейная арматура применяется для крепления проводов к изоляторам и изоляторов к опорам и делится на следующие основные виды: зажимы, сцепная арматура, соединители и др.

Зажимы служат для закрепления проводов и тросов и прикрепления их к гирляндам изоляторов и подразделяются на поддерживающие, подвешиваемые на промежуточных опорах, и натяжные, применяемые на опорах анкерного типа (рис. 3, а, б, в).

Рисунок 3. а - поддерживающий зажим; б - болтовой натяжной зажим; в - прессуемый натяжной зажим; г - поддерживающая гирлянда изоляторов; д - дистанционная распорка; е - овальный соединитель; ж - прессуемый соединитель

Сцепная арматура предназначена для подвески гирлянд на опорах и соединения многоцепных гирлянд друг с другом и включает скобы, серьги, ушки, коромысла. Скоба служит для присоединения гирлянды к траверсе опоры. Поддерживающая гирлянда (рис. 3, г) закрепляется на траверсе промежуточной опоры при помощи серьги 1, которая другой стороной вставляется в шапку верхнего подвесного изолятора 2. Ушко 3 используется для прикрепления к нижнему изолятору гирлянды поддерживающего зажима 4.

Соединители применяются для соединения отдельных участков провода. Они бывают овальные и прессуемые. В овальных соединителях провода либо обжимаются, либо скручиваются (рис. 3, е). Прессуемые соединители (рис. 3, ж) применяются для соединения проводов больших сечений. В сталеалюминевых проводах стальная и алюминиевая части опрессовываются раздельно.

Тросы наряду с искровыми промежутками, разрядниками и устройствами заземления служат для защиты линий от грозовых перенапряжений. Их подвешивают над фазными проводами на ВЛ напряжением 35 кВ и выше, в зависимости от района по грозовой деятельности и материала опор, что регламентируется «Правилами устройства электроустановок». Грозозащитные тросы обычно выполняют из стали, но при использовании их в качестве высокочастотных каналов связи - из стали и алюминия. На линиях 35-110 кВ крепление троса к металлическим и железобетонным промежуточным опорам осуществляется без изоляции троса.

Для защиты от грозовых перенапряжений участков ВЛ с пониженным по сравнению с остальной линией уровнем изоляции применяют трубчатые разрядники.

На ВЛ заземляются все металлические и железобетонные опоры, на которых подвешены грозозащитные тросы или установлены другие средства грозозащиты (разрядники, искровые промежутки) линий напряжением 6-35 кВ. На линиях до 1 кВ с глухозаземленной нейтралью крюки и штыри фазных проводов, устанавливаемые на железобетонных опорах, а также арматура этих опор должны быть присоединены к нулевому проводу.

Просмотров