Расчет теплопотерь пола по грунту в угв. Теплотехнический расчет полов, расположенных на грунте Нормативное сопротивление теплопередаче пола по грунту

Обычно теплопотери пола в сравнении с аналогичными показателями других ограждающих конструкций здания (наружные стены, оконные и дверные проемы) априори принимаются незначительными и учитываются в расчетах систем отопления в упрощенном виде. В основу таких расчетов закладывается упрощенная система учетных и поправочных коэффициентов сопротивления теплопередаче различных строительных материалов.

Если учесть, что теоретическое обоснование и методика расчета теплопотерь грунтового пола была разработана достаточно давно (т.е. с большим проектным запасом), можно смело говорить о практической применимости этих эмпирических подходов в современных условиях. Коэффициенты теплопроводности и теплопередачи различных строительных материалов, утеплителей и напольных покрытий хорошо известны, а других физических характеристик для расчета теплопотерь через пол не требуется. По своим теплотехническим характеристикам полы принято разделять на утепленные и неутепленные, конструктивно – полы на грунте и лагах.

Расчет теплопотерь через неутепленный пол на грунте основывается на общей формуле оценки потерь теплоты через ограждающие конструкции здания:

где Q – основные и дополнительные теплопотери, Вт;

А – суммарная площадь ограждающей конструкции, м2;

, – температура внутри помещения и наружного воздуха, оС;

β - доля дополнительных теплопотерь в суммарных;

n – поправочный коэффициент, значение которого определяется местоположением ограждающей конструкции;

– сопротивление теплопередаче, м2 °С/Вт.

Заметим, что в случае однородного однослойного перекрытия пола сопротивление теплопередаче Rо обратно пропорционально коэффициенту теплопередачи материала неутепленного пола на грунте.

При расчете теплопотерь через неутепленный пол применяется упрощенный подход, при котором величина (1+ β) n = 1. Теплопотери через пол принято производить методом зонирования площади теплопередачи. Это связано с естественной неоднородностью температурных полей грунта под перекрытием.

Теплопотери неутепленного пола определяются отдельно для каждой двухметровой зоны, нумерация которых начинается от наружной стены здания. Всего таких полос шириной 2 м принято учитывать четыре, считая температуру грунта в каждой зоне постоянной. Четвертая зона включает в себя всю поверхность неутепленного пола в границах первых трех полос. Сопротивление теплопередаче принимается: для 1-ой зоны R1=2,1; для 2-ой R2=4,3; соответственно для третьей и четвертой R3=8,6, R4=14,2 м2*оС/Вт.

Рис.1. Зонирование поверхности пола на грунте и примыкающих заглубленных стен при расчете теполопотерь

В случае заглубленных помещений с грунтовым основанием пола: площадь первой зоны, примыкающей к стеновой поверхности, учитывается в расчетах дважды. Это вполне объяснимо, так как теплопотери пола суммируются с потерями тепла в примыкающих к нему вертикальных ограждающих конструкциях здания.

Расчет теплопотерь через пол производится для каждой зоны отдельно, а полученные результаты суммируются и используются для теплотехнического обоснования проекта здания. Расчет для температурных зон наружных стен заглубленных помещений производиться по формулам, аналогичным приведенным выше.

В расчетах теплопотерь через утепленный пол (а таковым он считается, если в его конструкции есть слои материала с теплопроводностью менее 1,2 Вт/(м °С)) величина сопротивления теплопередачи неутепленного пола на грунте увеличивается в каждом случае на сопротивление теплопередаче утепляющего слоя:

Rу.с = δу.с / λу.с ,

где δу.с – толщина утепляющего слоя, м; λу.с – теплопроводность материала утепляющего слоя, Вт/(м °С).

Теплопотери через пол, расположенный на грунте, рассчитываются по зонам согласно . Для этого поверхность пола делят на полосы шириной 2 м, параллельные наружным стенам. Полосу, ближайшую к наружной стене, обозначают первой зоной, следующие две полосы - второй и третьей зоной, а остальную поверхность пола - четвертой зоной.

При расчете теплопотерь подвальных помещений разбивка на полосы-зоны в данном случае производится от уровня земли по поверхности подземной части стен и далее по полу. Условные сопротивления теплопередаче для зон в этом случае принимаются и рассчитываются так же, как для утепленного пола при наличии утепляющих слоев, которыми в данном случае являются слои конструкции стены.

Коэффициент теплопередачи К, Вт/(м 2 ∙°С) для каждой зоны утепленного пола на грунте определяется по формуле:

где – сопротивление теплопередаче утепленного пола на грунте, м 2 ∙°С/Вт, рассчитывается по формуле:

= + Σ , (2.2)

где - сопротивление теплопередаче неутепленного пола i-той зоны;

δ j – толщина j-того слоя утепляющей конструкции;

λ j – коэффициент теплопроводности материала, из которого состоит слой.

Для всех зон неутепленного пола есть данные по сопротивлению теплопередаче, которые принимаются по :

2,15 м 2 ∙°С/Вт – для первой зоны;

4,3 м 2 ∙°С/Вт – для второй зоны;

8,6 м 2 ∙°С/Вт – для третьей зоны;

14,2 м 2 ∙°С/Вт – для четвертой зоны.

В данном проекте полы на грунте имеют 4 слоя. Конструкция пола приведена на рисунке 1.2, конструкция стены приведена на рисунке 1.1.

Пример теплотехнического расчета полов, расположенных на грунте для помещения 002 венткамера:

1. Деление на зоны в помещении венткамеры условно представлено на рисунке 2.3.

Рисунок 2.3. Деление на зоны помещения венткамеры

На рисунке видно, что во вторую зону входит часть стены и часть пола. Поэтому коэффициент сопротивления теплопередаче этой зоны рассчитывается дважды.

2. Определим сопротивление теплопередаче утепленного пола на грунте, , м 2 ∙°С/Вт:

2,15 + = 4,04 м 2 ∙°С/Вт,

4,3 + = 7,1 м 2 ∙°С/Вт,

4,3 + = 7,49 м 2 ∙°С/Вт,

8,6 + = 11,79 м 2 ∙°С/Вт,

14,2 + = 17,39 м 2 ∙°С/Вт.

Ранее провели расчет теплопотерь пола по грунту для дома 6м шириной с УГВ на 6м и +3 градусов в глуби.
Результаты и постановка задачи тут -
Учитывали и теплопотери уличному воздуху и вглубь земли. Теперь же отделю мух от котлет, а именно проведу расчет чисто в грунт, исключая теплпередачу наружному воздуху.

Расчеты проведу для варианта 1 из прошлого расчета (без утепления). и следующих сочетаний данных
1. УГВ 6м, +3 на УГВ
2. УГВ 6м, +6 на УГВ
3. УГВ 4м, +3 на УГВ
4. УГВ 10м, +3 на УГВ.
5. УГВ 20м, +3 на УГВ.
Тем самым закроем вопросы связанные с влиянием глубины УГВ и влиянием температуры на УГВ.
Расчет как и ранее стационарный, не учитывающих сезонных колебаний да и вообще не учитывающий наружный воздух
Условия те же. Грунт имеет Лямда=1, стены 310мм Лямда=0,15, пол 250мм Лямда=1,2.

Результаты как и ранее по две картинки (изотермы и "ИК"), и числовые - сопротивление теплопередаче в грунт.

Числовые результаты:
1. R=4,01
2. R=4,01 (На перепад все нормируется, иначе и не должно было быть)
3. R=3,12
4. R=5,68
5. R=6,14

По поводу величин. Если соотнести их с глубиной УГВ получается следующее
4м. R/L=0,78
6м. R/L=0,67
10м. R/L=0,57
20м. R/L=0,31
R/L было бы равно единице (а точнее обратному коэффициенту теплопроводности грунта) для бесконечно большого дома, у нас же размеры дома сравнимы с глубиной на которую осуществляются теплопотери и чем меньше дом по сравнению с глубиной тем меньше должно быть данное отношение.

Полученная зависимость R/L должна зависеть от отношения ширины дома к УГВ (B/L), плюс к тому как уже сказано при B/L->бесконечности R/L->1/Лямда.
Итого есть следующие точки для бесконечно длинного дома:
L/B | R*Лямда/L
0 | 1
0,67 | 0,78
1 | 0,67
1,67 | 0,57
3,33 | 0,31
Данная зависимость неплохо аппрокисимируется экспонентной (см. график в комментарии).
При том экспоненту можно записать попроще без особой потери точности, а именно
R*Лямда/L=EXP(-L/(3B))
Данная формула в тех же точках дает следующие результаты:
0 | 1
0,67 | 0,80
1 | 0,72
1,67 | 0,58
3,33 | 0,33
Т.е. ошибка в пределах 10%, т.е. весьма удовлетворительная.

Отсюда для бесконечного дома любой ширины и для любого УГВ в рассмотренном диапазоне имеем формулу для расчета сопротивления теплопередаче в УГВ:
R=(L/Лямда)*EXP(-L/(3B))
здесь L - глубина УГВ, Лямда - коэффициент теплопроводности грунта, B - ширина дома.
Формула применима в диапазоне L/3B от 1,5 примерно до бесконечности (высокий УГВ).

Если воспользоваться формулой для более глубоких УГВ, то формула дает значительную ошибку, например для 50м глубины и 6м ширины дома имеем: R=(50/1)*exp(-50/18)=3,1, что очевидно слишком мало.

Всем удачного дня!

Выводы:
1. Увеличение глубины УГВ не приводит к сообразному уменьшению теплопотерь в грунтовые воды, так как вовлекается все большее количество грунта.
2. При этом системы с УГВ типа 20м и более могут никогда не выйти на стационар получаемый в расчете в период "жизни" дома.
3. R в грунт не столь и велик, находится на уровне 3-6, таким образом теплопотери вглубь пола по грунту весьма значительны. Это согласуется с полученным ранее результатом об отсутствии большого снижения теплопотерь при утеплении ленты или отмостки.
4. Из результатов выведена формула, пользуйтесь на здоровье (на свой страх и риск естественно, прошу заранее знать, что за достоверность формулы и иных результатов и применимость их на практике я никак не отвечаю).
5. Следует из небольшого исследования проведенного ниже в комментарии. Теплопотери улице снижают теплопотери грунту. Т.е. поотдельности рассматривать два процесса теплопередачи некорректно. И увеличивая теплозащиту от улицы мы повышаем теплопотери в грунт и тем самым становится ясным почему эффект от утепления контура дома полученный ранее не столь значителен.

Примеры расчёта прочности пола с бетонным подстилающим слоем

Пример 1

Требуется определить толщину бетонного подстилающего слоя в проезде складского помещения. Покрытие пола бетонное, толщиной h 1 = 2,5 см. Нагрузка на пол - от автомобилей МАЗ-205; грунт основания - суглинок. Грунтовые воды отсутствуют.

Для автомобиля МАЗ-205, имеющего две оси с нагрузкой на колесо 42 кН, расчётная нагрузка на колесо по формуле (6 ):

Р р = 1,2·42 = 50,4 кН

Площадь следа колеса у автомобиля МАЗ-205 равна 700 см 2

Согласно формуле (5 ) вычисляем:

r = D /2 = 30/2 = 15 cм

По формуле (3 ) r р = 15 + 2,5 = 17,5 см

2. Для суглинистого грунта основания при отсутствии грунтовых вод по табл. 2.2

К 0 = 65 Н/см 3:

Для подстилающего слоя примем бетон по прочности при сжатии В22,5. Тогда в зоне проезда в складском помещении, где на полы не устанавливается стационарное технологическое оборудование (согласно п. 2.2 группа I), при нагрузке от безрельсовых транспортных средств по табл. 2.1 R δt = 1,25 МПа, E б = 28500 МПа.

3. σ р . Нагрузка от автомобиля, согласно п. 2.4 , является нагрузкой простого вида и передаётся по следу круглой формы. Поэтому расчётный изгибающий момент определим по формуле (11 ). Согласно п. 2.13 зададимся ориентировочно h = 10 см. Тогда по п. 2.10 принимаем l = 44,2 см. При ρ = r р /l = 17,5/44,2 = 0,395 по табл. 2.6 найдём K 3 = 103,12. По формуле (11 ): М р = К 3 ·Р р = 103,12·50,4 = 5197 Н·см/см. По формуле (7 ) вычисляем напряжения в плите:

Напряжение в плите толщиной h = 10 см превышает расчётное сопротивление R δt = 1,25 МПа. В соответствии с п. 2.13 расчёт повторим, задавшись большим значением h = 12 см, тогда l = 50,7 см; ρ = r р /l = 17,5/50,7 = 0,345; К 3 = 105,2; М р = 105,2·50,4 = 5302 Н·см/см

Полученное σ р = 1,29 МПа отличается от расчётного сопротивления R δt = 1,25 МПа (см. табл. 2.1 ) менее чем на 5%, поэтому принимаем подстилающий слой из бетона по прочности при сжатии класса В22,5 толщиной 12 см.

Пример 2

Требуется определить для механических мастерских толщину бетонного подстилающего слоя, используемого в качестве пола без устройства покрытия (h 1 = 0 см). Нагрузка на пол - от станка весом P p = 180 кН, стоящего непосредственно на подстилающем слое, равномерно распределяется по следу в виде прямоугольника размером 220´120 см. Особых требований к деформации основания не предъявляются. Грунт основания - мелкий песок, находится в зоне капиллярного поднятия грунтовых вод.

1. Определим расчётные параметры.

Расчётная длина следа согласно п. 2.5 и по формуле (1 ) а р = а = 220 см. Расчётная ширина следа по формуле (2 ) b p = b = 120 см. Для грунта основания из мелкого песка, находящегося в зоне капиллярного поднятия грунтовых вод, согласно табл. 2.2 K 0 = 45 Н/см 3 . Для подстилающего слоя примем бетон по прочности при сжатии класса В22,5. Тогда в механических мастерских, где на полы устанавливается стационарное технологическое оборудование без особых требований к деформации основания (согласно п. 2.2 группа II), при неподвижной нагрузке по табл. 2.1 R δt = 1,5 МПа, E б = 28500 МПа.

2. Определим напряжение растяжения в бетоне плиты при изгибе σ р . Нагрузка передаётся по следу прямоугольной формы и, согласно п. 2.5 , является нагрузкой простого вида.

Поэтому расчётный изгибающий момент определим по формуле (9 ). Согласно п. 2.13 зададимся ориентировочно h = 10 см. Тогда по п. 2.10 принимаем l = 48,5 см.

С учётом α = а р /l = 220/48,5 = 4,53 и β = b р /l = 120/48,5 = 2,47 по табл. 2.4 найдём К 1 = 20,92.

По формуле (9 ): М р = К 1 ·Р р = 20,92·5180 = 3765,6 Н·см/см.

По формуле (7 ) вычисляем напряжение в плите:

Напряжение в плите толщиной h = 10 см значительно меньше R δt = 1,5 МПа. В соответствии с п. 2.13 проведём повторный расчёт и, сохраняя h = 10 см, найдём более низкую марку бетона плиты подстилающего слоя, при которой σ р » R δt . Примем бетон класса по прочности на сжатие В15, для которого R δt = 1,2 МПа, E б = 23000 МПа.

Тогда l = 46,2 см; α = а р /l = 220/46,2 = 4,76 и β = b р /l = 120/46,2 = 2,60; по табл. 2.4 К 1 = 18,63;. М р = 18,63·180 = 3353,4 Н·см/см.

Полученное напряжение растяжения в плите из бетона класса по прочности при сжатии В15 меньше R δt = 1,2 МПа. Примем подстилающий слой из бетона класса по прочности при сжатии В15 толщиной h = 10 см.

Пример 3

Требуется определить толщину бетонного подстилающего слоя пола в машино-стоительном цехе при нагрузках от станков автоматизированной линии и автомобилей ЗИЛ-164. Схема расположения нагрузок приведена на рис. 1 в", 1 в"", 1 в""". Центр следа колеса автомобиля находится на расстоянии 50 см от края следа станка. Вес станка в рабочем состоянии Р р = 150 кН распределяется равномерно по площади следа прямоугольной формы длиной 260 см и шириной 140 см.

Покрытием пола является упрочнённая поверхность подстилающего слоя. Грунт основания - супесь. Основание находится в зоне капиллярного поднятия грунтовых вод

Определим расчётные параметры.

Для автомобиля ЗИЛ-164, имеющего две оси с нагрузкой на колесо 30,8 кН, расчётная нагрузка на колесо по формуле (6 ):

Р р = 1,2·30,8 = 36,96 кН

Площадь следа колеса у автомобиля ЗИЛ-164 равна 720 см 2

Согласно п. 2.5

r р = r = D /2 = 30/2 = 15 cм

Для супесчаного грунта основания, находящегося в зоне капиллярного поднятия грунтовых вод, по табл. 2.2 К 0 = 30 Н/см 3 . Для подстилающего слоя примем бетон класса по прочности при сжатии В22,5. Тогда для машиностроительного цеха, где на полы установлена автоматизированная линия (согласно п. 2.2 группа IV), при одновременном действии неподвижных и динамических нагрузок по табл. 2.1 R δt = 0,675 МПа, Е б = 28500 МПа.

Зададимся ориентировочно h = 10 см, тогда по п. 2.10 принимаем l = 53,6 см. В этом случае расстояние от центра тяжести следа колеса автомобиля до края следа станка равное 50 см l = 321,6 см, т.е. согласно п. 2.4 действующие на пол нагрузки относятся к нагрузкам сложного вида.

В соответствии с п. 2.17 установим положение расчётных центров в центрах тяжести следа станка (O 1) и колеса автомобиля (О 2). Из схемы расположения нагрузок (рис. 1 в") следует, что для расчётного центра O 1 неясно, какое следует установить направление оси ОУ. Поэтому изгибающий момент определим как при направлении оси ОУ, параллельном длинной стороне следа станка (рис. 1 в"), так и перпендикулярном этой стороне (рис. 1 в""). Для расчётного центра О 2 примем направление ОУ через центры тяжести следов станка и колеса автомобиля (рис. 1 в""").

Расчёт 1 Определим напряжение растяжения в бетоне плиты при изгибе σ р для расчётного центра O 1 при направлении ОУ параллельно длинной стороне следа станка (рис. 1 в"). При этом нагрузка от станка при следе прямоугольной формы относится к нагрузке простого вида. Для следа станка по п. 2.5 при отсутствии покрытия пола (h 1 = 0 см) а р = а = 260 см; b p = b = 140 см.

С учётом значений α = а р /l = 260/53,6 = 4,85 и β = b р /l = 140/53,6 = 2,61 по табл. 2.4 найдём K 1 = 18,37.

Для станка Р 0 = Р р = 150 кН в соответствии с п. 2.14 определяем по формуле (9 ):

М р = К 1 ·Р р = 18,37·150 = 27555,5 Н·см/см.

Координаты центра тяжести следа колеса автомобиля: x i = 120 см и у i = 0 см.

С учётом отношений x i /l = 120/53,6 = 2,24 и y i /l = 0/53,6 = 0 по табл. 2.7 найдём К 4 = -20,51.

Изгибающий момент в расчётном центре O 1 от колеса автомобиля по формуле (14 ):

M i = -20,51·36,96 = -758,05 Н·см/см.

13 ):

M p I = M 0 + ΣM i = 2755,5 - 758,05 = 1997,45 Н·см/см

7 ):

Расчёт 2 Определим напряжение растяжения в бетоне плиты при изгибе σ р II для расчётного центра O 1 при направлении ОУ перпендикулярно длинной стороне следа станка (рис. 1 в""). Разделим площадь следа станка на элементарные площадки согласно п. 2.18 . Совместим с расчётным центром O 1 центр тяжести элементарной площадки квадратной формы с длиной стороны а р = b р = 140 см.

Определим нагрузки Р i , приходящиеся на каждую элементарную площадку по формуле (15 ), для чего сначала определим площадь следа станка F = 260·140 = 36400 см 2 ;

Для определения изгибающего момента М 0 от нагрузки Р 0 вычислим для элементарной площадки квадратной формы с центром тяжести в расчётном центре O 1 значения α = β = а р /l = b р /l = 140/53,6 = 2,61 и с их учётом по табл. 2.4 найдём K 1 = 36,0; исходя из указаний п. 2.14 и формуле (9 ) вычисляем:

М 0 = К 1 ·Р 0 = 36,0·80,8 =2908,8 Н·см/см.

М i , от нагрузок, расположенных вне расчётного центра O 1 . Расчётные данные приведены в табл. 2.10 .

Таблица 2.10

Расчётные данные при расчётном центре O 1 и направлении оси ОУ, перпендикулярном длинной стороне следа станка


I

x i

y i

x i /l

y i /l

К 4 по табл. 2.7

P i , кН

n i кол-во нагрузок

М i = n i · К 4 ·P i

1

0

120

0

2,24

9,33

36,96

1

363,3

2

120

35

1,86

0,65

-17,22

17,31

4

-1192,3

ΣМ i = -829,0 Н·см/см

Расчётный изгибающий момент от колеса автомобиля и станка по формуле (13 ):

M p II = M 0 + ΣM i = 2908,8 - 829,0 = 2079,8 Н·см/см

Напряжение растяжения в плите при изгибе по формуле (7 ):

Расчёт 3 Определим напряжение растяжения в бетоне плиты при изгибе σ р III для расчётного центра O 2 (рис. 1 в"""). Разделим площадь следа станка на элементарные площадки согласно п. 2.18 . Определим нагрузки Р i , приходящиеся на каждую элементарную площадку, по формуле (15 ).

Определим изгибающий момент от нагрузки, создающейся давлением колеса автомобиля, для чего найдём ρ = r р /l = 15/53,6 = 0,28; по табл. 2.6 найдём К 3 = 112,1. По формуле (11 ): М 0 = К 3 ·Р р = 112,1·36,96 = 4143,22 Н·см/см.

Определим суммарный изгибающий момент ΣМ i от нагрузок, расположенных вне расчётного центра O 2 . Расчётные данные приведены в табл. 2.11 .

Таблица 2.11

Расчётные данные при расчётном центре O 2


I

x i

y i

x i /l

y i /l

К 4 по табл. 2.7

P i , кН

n i кол-во нагрузок

М i = n i · К 4 ·P i

1

0

65

0

1,21

40,97

4,9

1

200,75

2

0

100

0

1,87

16,36

6,6

1

107,98

3

0

155

0

2,89

2,89

11,5

1

33,24

4

40

65

0,75

1,21

19,1

4,9

2

187,18

5

40

100

0,75

1,87

8,44

6,6

2

111,41

6

40

155

0,75

2,89

1,25

11,5

2

28,75

7

95

65

1,77

1,21

-10,78

8,7

2

-187,57

8

95

100

1,77

1,87

-5,89

11,5

2

-135,47

9

95

155

1,77

2,89

-2,39

20,2

2

-96,56

ΣМ i = 249,7 Н·см/см

Расчётный изгибающий момент от колеса автомобиля и станка по формуле (13 ):

M p III = M 0 + ΣM i = 4143,22 + 249,7 = 4392,92 Н·см/см

Напряжение растяжения в плите при изгибе по формуле (7 ):

более R δt = 0,675 МПа, вследствие чего повторим расчёт, задавшись большим значением h . Расчёт проведём только по схеме загружения с расчётным центром O 2 , для которой значение σ р III в первом расчёте получилось наибольшим.

Для повторного расчёта ориентировочно зададимся h = 19 см, тогда по п. 2.10 принимаем l = 86,8 см; ρ = r р /l =15/86,8 = 0,1728; К 3 = 124,7; М 0 = К 3 ·Р p = 124,7·36,96 = 4608,9 Н·см/см.

Определим суммарный изгибающий момент от нагрузок, расположенных вне расчётного центра O 2 . Расчётные данные приведены в табл. 2.12 .

Таблица 2.12

Расчётные данные при повторном расчёте


I

x i

y i

x i /l

y i /l

К 4 по табл. 2.7

P i , кН

n i кол-во нагрузок

М i = n i · К 4 ·P i

1

0

65

0

0,75

76,17

4,9

1

373,23

2

0

100

0

1,15

44,45

6,6

1

293,37

3

0

155

0

1,79

18,33

11,5

1

210,79

4

40

65

0,46

0,75

48,36

4,9

2

473,93

5

40

100

0,46

1,15

32,39

6,6

2

427,55

6

40

155

0,46

1,79

14,49

11,5

2

333,27

7

95

65

1,09

0,75

1,84

8,7

2

32,02

8

95

100

1,09

1,15

3,92

11,5

2

90,16

9

95

155

1,09

1,79

2,81

20,2

2

113,52

ΣМ i = 2347,84 Н·см/см.

M p = M 0 + ΣM i = 4608,9 + 2347,84 = 6956, 82 Н·см/см

Напряжение растяжения в плите при изгибе по формуле (7 ):

Полученное значение σ р = 0,67 МПа отличается от R δt = 0,675 МПа менее чем на 5%. Принимаем подстилающий слой из бетона класса по прочности на сжатие В22,5 толщиной h = 19 см.

Просмотров