Установка раздельного дыма отведения многоквартирного дома. Сколько пар виртуальных частиц, появляется в вакууме, за определённый промежуток времени? Проводились ли такие измерения? Оборудование, входящее в состав комплекса

Специальные белые трубы и поворотные отводы для устройства раздельного дымоудаления от различных газовых котлов. Детали изготовлены из алюминиевого сплава, покраска в белый цвет произведена под высокой температурой качественной порошковой эмалью. Одинаково устанавливается на удаление угарного газа и притока воздуха для горения. Предназначена только для котлов с закрытой камерой сгорания на которых устанавливается различной конструкции адаптер или с уже присутствующими в конструкции патрубками.

Детали для устройства раздельного дымохода 80/80:

Труба в диаметре 80 мм.

  1. Длина трубки 250 мм. = 300 р
  2. Длина трубки 500 мм. = 400 р
  3. Длина трубки 1000 мм. = 600 р
  4. Длина трубки 1500 мм. = Отсутствует
  5. Длина трубки 2000 мм. = Отсутствует

Раструбная система сборки, в комплекте поставляется резиновый уплотнитель рассчитанный на высокую температуру отходящих газов из настенного котла.

Отводы и уголки диаметром 80 мм.

  1. Отвод с прямым углом 90 градусов = 450 р.
  2. Отвод с косым углом 45 градусов = 450 р.

Собирается довольно просто через раструб с резиновой манжетой.

Это высококачественные алюминиевые системы дымоудаления для настенных котлов с закрытой камерой сгорания, позволяющие укомплектовать более 80% всех известных моделей настенных котлов от крупнейших мировых производителей, среди которых Electrolux, De Dietrich, Baxi, Ariston, Vaillant, Navien, Protherm и другие известные марки.

Раздельные системы дымоудаления

Как это работает. Забор воздуха и удаления продуктов сгорания топлива осуществляется по двум различным трубам, причем диаметр каждой составляет 80 мм. За счет увеличенного сечения длина каждого канала может достигать 20 метров. Также, за счет раздельной компоновки такие системы идеально подходят для поквартирных систем отопления. Для экономии средств и площади современные дома с поквартирной системой дымоудаления имеют всего одну шахту – дымоотводящую, а воздухозабор осуществляется с фасада здания. Это условие делает невозможным использование коаксиального дымохода в большинстве зданий с поквартирной системой отопления.

Защищает от прямого задувания сильного ветра и возможности попадания птиц и грызунов во внутрь системы дымохода. Устанавливается на трубе отводящей угарные газы, можно применять и на воздухозаборе. Присоединение происходит на без раструбную часть дымохода и фиксируется нержавеющим саморезом.

Чтобы было еще проще, можно приобрести готовые комплекты с раздельным дымоходом, комплект также будет производить забор воздуха в камеру сгорания по одной трубе, а выброс дымовых газов по другой. Материал труб – эмалированный алюминий (анти-кородаллин) или алюминий без покрытия. Обычно такие системы устанавливаются тогда, когда расстояние от котла до наружной стены превышает 5 м. (суммарная длина труб раздельного дымохода может быть до 30 м.) или когда необходимо раздельный забор воздуха и удаление дыма, например в многоэтажных домах. Адаптер в комплекте обязательно должен быть от нужного вам отопительного оборудования, или иметь возможность универсального присоединения к разным моделям газовых котлов.

Котлы различают по следующим признакам:

По назначению:

Энергетически е – вырабатывающие пар для паровых турбин; их отличает высокая производительность, повышенные параметры пара.

Промышленные – вырабатывающие пар как для паровых турбин, так и для технологических нужд предприятия.

Отопительные – производящие пар для отопления промышленных,жилых и общественных зданий. К ним относятся и водогрейные котлы. Водогрейный котел – устройство, предназначенное для получения горячей воды с давлением выше атмосферного.

Котлы-утилизаторы - предназначены для получения пара или горячей воды за счет использования тепла вторичных энергетических ресурсов (ВЭР) при переработке отходов химических производств, бытового мусора и т.д.

Энерготехнологические – предназначены для получения пара за счет ВЭР и являющиеся неотъемлемой частью технологического процесса (например, содорегенерационные агрегаты).

По конструкции топочного устройства (рис. 7):

Рис. 7. Общая классификация топочных устройств

Различают топки слоевые – для сжигания кускового топлива и камерные – для сжигания газового и жидкого топлива, а также твердого топлива в пылевидном (или мелкодробленом) состоянии.

Слоевые топки подразделяются на топки с плотным и кипящим слоем, а камерные – на факельные прямоточные и циклонные (вихревые).

Камерные топки для пылевидного топлива подразделяют на топки с твердым и жидким шлакоудалением. Кроме того, по конструкции они могут быть однокамерными и многокамерными, а по аэродинамическому режиму – под разрежением и под наддувом .

В основном используется схема под разряжением, когда в газоходах котла дымососом создается давление меньше атмосферного, то есть разряжение. Но в некоторых случаях при сжигании газа и мазута или твердого топлива с жидким шлакоудалением может использоваться схема под наддувом.

Схема котла под наддувом. В этих котлахвысоконапорная дутьевая установка обеспечивает избыточное давление в топочной камере 4 – 5 кПа, которое позволяет преодолеть аэродинамическое сопротивление газового тракта (рис. 8). Поэтому в этой схеме отсутствует дымосос. Газоплотность газового тракта обеспечивается установкой мембранных экранов в топочной камере и на стенах газоходов котла.

Достоинства данной схемы:

Сравнительно низкие капитальные затраты на обмуровку;

Более низкий по сравнению с котлом, работающим под

разряжением, расход электроэнергии на собственные нужды;

Более высокий КПД за счет снижения потерь с уходящими газами из-за отсутствия присосов воздуха в газовый тракт котла.

Недостаток – сложность конструкции и технологии изготовления мембранных поверхностей нагрева.

По виду теплоносителя , генерируемого котлом: паровые и водогрейные .

По перемещению газов и воды (пара):

    газотрубные (жаротрубные и с дымогарными трубами);

    водотрубные;

    комбинированные.

Схема жаротрубного котла. Котлы предназначены для замкнутых систем отопления, вентиляции и горячего водоснабжения и выпускаются для работы при допустимом рабочем давлении 6 бар и допустимой температуре воды до 115 °С. Котлы предназначены для работы на газообразном и жидком топливе, в том числе на мазуте и сырой нефти, и обеспечивают КПД при работе на газе – 92 % и на мазуте – 87 %.

Стальные водогрейные котлы имеют горизонтальную реверсивную камеру сгорания с концентрическим расположением дымогарных труб (рис. 9). Для оптимизации тепловой нагрузки, давления в камере сгорания и температуры отходящих газов дымогарные трубы оснащены турбулизаторами из нержавеющей стали.

Рис. 8. Схема котла под «наддувом»:

1 – воздухозаборная шахта; 2 – высоконапорный вентилятор;

3 – воздухоподогреватель 1-й ступени; 4 – водяной экономайзер

1-й ступени; 5 – воздухоподогреватель 2-й ступени; 6 – воздуховоды

горячего воздуха; 7 – горелочное устройство; 8 – газоплотные

экраны, выполненные из мембранных труб; 9 – газоход

Рис. 9. Схема топочной камеры жаротрубных котлов:

1 – передняя крышка;

2 – топка котла;

3 – дымогарные трубы;

4 – трубные доски;

5– каминная часть котла;

6 – люк каминной части;

7 – горелочное устройство

По способу циркуляции воды все разнообразие конструкций паровых котлов на весь диапазон рабочих давлений можно свести к трем типам:

- с естественной циркуляцией – рис. 10а;

- с многократной принудительной циркуляцией – рис. 10б;

- прямоточные – рис. 10в.

Рис. 10. Способы циркуляции воды

В котлах с естественной циркуляцией движение рабочего тела по испарительному контуру осуществляется за счет разности плотностей столбов рабочей среды: воды в опускной питательной системе и пароводяной смеси
в подъемной испарительной части циркуляцион-ного контура (рис. 10а). Движущий напор циркуляции
в контуре можно выразить формулой

, Па,

где h – высота контура, g – ускорение свободного падения, ,
– плотность воды и пароводяной смеси.

При критическом давлении рабочая среда является однофазной и ее плотность зависит только от температуры, а так как последние близки между собой в опускной и подъемной системах, то движущий напор циркуляции будет очень мал. Поэтому на практике естественная циркуляция применяется для котлов только до высоких давлений, обычно не выше 14 МПа.

Движение рабочего тела по испарительному контуру характери-зуется кратностью циркуляции К, которая представляет собой отношение часового массового расхода рабочего тела через испарительную систему котла к его часовой паропроизводительности. Для современных котлов сверхвысокого давления К=5-10, для котлов низких и средних давлений К составляет от 10 до 25.

Особенностью котлов с естественной циркуляцией является способ компоновки поверхностей нагрева, заключающийся в следующем:

В котлах с многократной принудительной циркуляцией движение рабочего тела по испарительному контуру осуществляется за счет работы циркуляционного насоса, включаемого в опускной поток рабочей жидкости (рис. 10б). Кратность циркуляции поддерживается невысокой (К=4-8), поскольку циркуляционный насос гарантирует ее сохранение при всех колебаниях нагрузки. Котлы с многократной принудительной циркуляцией позволяют экономить металл для поверхностей нагрева, так как допускаются повышенные скорости воды и рабочей смеси, частично улучшая, таким образом, охлаждение стенки труб. Габариты агрегата при этом несколько снижаются, так как диаметр трубок можно выбирать меньшим, чем для котлов с естественной циркуляцией. Эти котлы могут применяться вплоть до критических давлений 22,5 МПа, наличие барабана дает возможность хорошо осушать пар и продувать загрязненную котловую воду.

В прямоточных котлах (рис. 10в) кратность циркуляции равна единице и движение рабочего тела от входа в экономайзер и до выхода из агрегата перегретого пара принудительное, осуществляемое питательным насосом. Барабан (достаточно дорогой элемент) отсутствует, что дает при сверхвысоком давлении известное преимущество прямоточным агрегатам; однако это обстоятельство вызывает при сверхкритическом давлении удорожание станционной водоподготовки, поскольку повышаются требования к чистоте питательной воды, которая должна в этом случае содержать примесей не больше, чем выдаваемый котлом пар. Прямоточные котла универсальны по рабочему давлению, а на закритическом давлении вообще являются единственными генераторами пара и находят широкое применение в современной электроэнергетике.

Существует разновидность циркуляции воды в прямоточных парогенераторах – комбинированная циркуляция, осуществляемая за счет особого насоса или дополнительного параллельного циркуляционного контура естественной циркуляции в испарительной части прямоточного котла, позволяющая улучшить охлаждение экранных труб при малых нагрузках котла за счет увеличения на 20–30 % массы циркулируемой через них рабочей среды.

Схема котла с многократной принудительной циркуляцией на докритическое давление представлена на рис. 11.

Рис. 11. Конструктивная схема котла с многократной принудительной циркуляцией:

1 – экономайзер; 2 – барабан;

3 – опускная питательная труба; 4 – циркуляционный насос; 5 – раздача воды по циркуляционным контурам;

6 – испарительные радиа-ционные поверхности нагрева;

7 – фестон; 8 – пароперегреватель;

9 – воздухоподогреватель

Циркуляционный насос 4 работает с перепадом давления 0,3 МПа и позволяет применять трубы малого диаметра, что дает экономию металла. Малый диаметр труб и невысокая кратность циркуляции (4 – 8) вызывают относительное снижение водяного объема агрегата, следовательно, снижение габаритов барабана, уменьшение сверлений в нем, а отсюда общее снижение стоимости котла.

Малый объем и независимость полезного напора циркуляции от нагрузки позволяют быстро растапливать и останавливать агрегат, т.е. работать в регулировочно-пусковом режиме. Область применения котлов с многократной принудительной циркуляцией ограничивается сравнительно невысокими давлениями, при которых можно получать наибольший экономический эффект за счет удешевления развитых конвективных испарительных поверхностей нагрева. Котлы с многократной принуди-тельной циркуляцией нашли распространение в теплоутилизационных и парогазовых установках.

Прямоточные котлы. Прямоточные котлы не имеют зафиксированной границы между экономайзером и испарительной частью, между испарительной поверхностью нагрева и пароперегревателем. При изменении температуры питательной воды, рабочего давления в агрегате, воздушного режима топки, влажности топлива и других факторов соотношения между поверхностями нагрева экономайзера, испарительной части и перегревателя меняются. Так, при понижении давления в котле снижается теплота жидкости, повышается теплота испарения и снижается теплота перегрева, поэтому уменьшается зона, занимаемая экономайзером (зона подогрева), растет зона испарений и уменьшается зона перегрева.

В прямоточных агрегатах все примеси, поступающие с питательной водой, не могут удаляться с продувкой подобно барабанным котлам и откладываются на стенках поверхностей нагрева или уносятся с паром в турбину. Поэтому прямоточные котлы предъявляют высокие требования к качеству питательной воды.

Для уменьшения опасности пережога труб из-за отложения солей в них зону, в которой испаряются последние капли влаги и начинается перегрев пара, на докритических давлениях выносят из топки в конвективный газоход (так называемая вынесенная переходная зона ).

В переходной зоне идет энергичное выпадение и отложение примесей, а так как температура стенки металла труб в переходной зоне ниже, чем в топке, то опасность пережога труб значительно снижается и толщину отложений можно допускать большей. Соответственно удлиняется межпромывочная рабочая кампания котла.

Для агрегатов закритических давлений переходная зона, т.е. зона усиленного выпадения солей, также имеется, но она сильно растянута. Так, если для высоких давлений ее энтальпия измеряется величиной 200-250 кДж/кг, то для закритических давлений возрастает до 800 кДж/кг, и тогда выполнение вынесенной переходной зоны становится нецелесообразным, тем более, что содержание солей в питательной воде здесь так мало, что практически равно их растворимости в паре. Поэтому, если котел, спроектированный на закритическое давление, имеет вынесенную переходную зону, то делается это только из соображений обычного охлаждения дымовых газов.

Из-за малого аккумулирующего объема воды у прямоточных котлов важную роль играет синхронность подачи воды, топлива и воздуха. При нарушении этого соответствия в турбину можно подать влажный или чрезмерно перегретый пар, в связи с чем для прямоточных агрегатов автоматизация регулирования всех процессов является просто обязательной.

Прямоточные котлы конструкции профессора Л.К. Рамзина. Особенностью котла является компоновка радиационных поверхностей нагрева в виде горизонтально-подъемной навивки трубок по стенам топки с минимумом коллекторов (рис. 12).

Рис. 12. Конструктивная схема прямоточного котла Рамзина:

1 – экономайзер; 2 – перепускные необогреваемые трубы;

3 – нижний распределительный коллектор воды; 4 – экранные

трубы; 5 – верхний сборный коллектор смеси; 6 – вынесенная

переходная зона; 7 - настенная часть перегревателя;

8 – конвективная часть перегревателя; 9 –воздухоподогреватель;

10 – горелка

Как в дальнейшем показала практика, такое экранирование имеет как положительные, так и отрицательные стороны. Позитивным является равномерный обогрев отдельных трубок, включенных в ленту, так как трубки проходят по высоте топки все температурные зоны в одинаковых условиях. Негативным – невозможность выполнения радиационных поверхностей заводскими крупными блоками, а также повышенная склонность к теплогидравлическим разверкам (неравномерное распределение температуры и давления в трубах по ширине газохода) при сверхвысоком и сверхкритическом давлении из-за большого приращения энтальпии в длинном змеевике.

Для всех систем прямоточных агрегатов соблюдаются некоторые общие требования. Так, в конвективном экономайзере питательная вода до поступления в топочные экраны не догревается до кипения примерно на 30 °С, что устраняет образование пароводяной смеси и неравномерное ее распределение по параллельным трубкам экранов. Далее, в зоне активного горения топлива, в экранах обеспечивается достаточно высокая массовая скорость ρω ≥ 1500 кг/(м 2 ·с) при номинальной паропроизводительности D н, что гарантирует надежное охлаждение трубок экранов. Около 70 – 80 % воды превращается в пар в экранах топки, а в переходной зоне испаряется оставшаяся влага и весь пар перегревается на 10-15 °С во избежание отложения солей в верхней радиационной части перегревателя.

Кроме того, паровые котлы классифицируются по давлению пара и по паропроизводительности.

По давлению пара:

    низкого – до 1 МПа;

    среднего от 1 до 10 МПа;

    высокого – 14 МПа;

    сверхвысокого – 18-20 МПа;

    сверхкритического – 22,5 МПа и выше.

По производительности:

    малая –до 50 т/ч;

    средняя – 50-240 т/ч;

    большая (энергетическая) – свыше 400 т/ч.

Маркировка котлов

Для маркировки котлов установлены следующие индексы:

вид топлив а : К – каменный уголь; Б – бурый уголь; С – сланцы; М – мазут; Г – газ (при сжигании мазута и газа в камерной топке индекс типа топки не указывается); О – отходы, мусор; Д – другие виды топлива;

тип топки : Т – камерная топка с твердым шлакоудалением; Ж – камерная топка с жидким шлакоудалением; Р – слоевая топка (индекс вида топлива, сжигаемого в слоевой топке, в обозначении не указывается); В – вихревая топка; Ц – циклонная топка; Ф – топка с кипящим слоем; в обозначение котлов с наддувом вводится индекс Н ; при сейсмически стойком исполнении – индекс С .

способ циркляции : Е – естественная; Пр – многократная принудительная;

Пп – прямоточные котлы.

Цифрами указывается:

для паровых котлов – паропроизводительность (т/ч), давление перегретого пара (бар), температура перегретого пара (°С);

для водогрейных – теплопроизводительность (МВт).

Например: Пп1600–255–570 Ж . Прямоточный котел паропроизводи-тельностью 1600 т/ч, давление перегретого пара – 255 бар, температура пара – 570 °С, топка с жидким шлакоудалением.

Компоновка котлов

Под компоновкой котла подра­зумевается взаимное расположение газохо­дов и поверхностей нагрева (рис. 13).

Рис. 13. Схемы компоновки котлов:

а ­­– П-образная компоновка; б – двухходовая компоновка; в – компоновка с двумя конвективными шахтами (Т-образная); г – компоновка с U-образными конвективными шахтами; д – компоновка с инверторной топкой; е – башенная компоновка

Наиболее распространена П-образная компоновка (рис.13а – одноходовая , 13б – двухходовая ). Преимуществами ее являются подача топлива в нижнюю часть топки и вывод продуктов сгорания из нижней части конвективной шахты. Недостатки этой компоновки - неравномерное заполнение газами топочной камеры и неравномерное омы­вание продуктами сгорания поверхностей на­грева, расположенных в верхней части агре­гата, а также неравномерная концентрация золы по сечению конвективной шахты.

Т-образная компоновка с двумя конвек­тивными шахтами, расположенными по обе стороны топки с подъемным движением газов в топке (рис. 13в), позволяет уменьшить глубину конвективной шахты и высоту гори­зонтального газохода, но наличие двух кон­вективных шахт усложняет отвод газов.

Трехходовая компоновка агрегата с дву­мя конвективными шахтами (рис. 13г) иногда применяется при верхнем распо­ложении дымососов.

Четырехходовая компоновка (Т-образная двухходовая) с двумя вертикальными пе­реходными газоходами, заполненными разря­женными поверхностями нагрева, применяет­ся при работе агрегата на зольном топливе с легкоплавкой золой.

Башенная компоновка (рис. 13е) используется для пиковых парогенераторов, работающих на газе и мазуте в целях ис­пользования самотяги газоходов. При этом возникают затруднения, связанные с креплением конвек­тивных поверхностей нагрева.

U – образная компоновка с инверторной топкой с нисходящим в ней потоком продуктов сгорания и подъемным их движением в конвективной шахте (рис. 13д) обеспечивает хорошее заполнение топки факелом, низкое расположение пароперегревателей и минимальное сопротивление воздушного тракта вследствие малой длины воздуховодов. Недостаток такой компоновки – ухудшенная аэродинамика переходного газохода, обусловленная расположением горелок, дымососов и вентиляторов на большой высоте. Такая компоновка может оказаться целесообразной при работе котла на газе и мазуте.

Монтаж газового котла – процесс комплексный, в котором важен каждый этап, каждая составляющая. Поэтому, когда возникает разговор о дымоудалении газового котла, то необходимо понимать, что речь идет о правильном подходе к выбору и установке дымохода. Именно от этой трубы зависит качество работы и безопасность эксплуатации самого нагревательного оборудования.

Что такое система дымоудаления

Если говорить именно о газовых котлах, то система дымоудаления — это на самом деле труба, которую изготавливают из негорючих материалов. Форма сечения может быть круглой или прямоугольной. Устанавливают ее на газовый котел, а точнее, на его выходной патрубок, который соединяет дымоход с топкой, где сжигается топливо. А выводят другой конец на улицу.

Основное требование к системе дымоудаления для котла – полная герметичность конструкции и как можно меньше отклонений от прямолинейности контура. При этом обязательно делается расчет на сечение трубы, который зависит от мощности газового оборудования.

Из чего лучше сделать дымоход для котла на газе

Как уже было сказано выше, дымоход должен быть изготовлен из негорючих материалов. Поэтому производители предлагают достаточно широкий ассортимент этого изделия из разных материалов.

  1. Кирпичный. У него большая механическая прочность, кирпич долго держит тепло. Из недостатков: можно собрать только прямоугольную форму, которая неидеальна для газовых потоков. К тому же поверхность дымохода пористая, негладкая, что отражается на скорости движения отводящих газов. А значит, происходит снижение тяги. Сюда же надо добавить сложность монтажа, большой удельный вес и большие проблемы с обслуживанием.
  2. Стальные. Это модульная система дымоудаления газовых котлов, то есть, дымоход собирается из нескольких частей. Материал изготовления – кислостойкая нержавеющая сталь толщиною 0,6-1 мм. Достоинств у этой разновидности много: небольшой удельный вес, невысокая цена, простота монтажа и обслуживания, гладкая внутренняя поверхность, высокая коррозионная стойкость. Единственный минус – такую систему дымоудаления надо обязательно утеплять. К этой разновидности можно отнести гофрированные трубы и сэндвич модификации.
  3. Керамические. По сути, это комбинация из нескольких материалов: сам дымоход, изготовленный из жаропрочной керамики, утеплитель в виде мата из негорючего материала и защитный канал из ячеистого бетона. Этот вариант металлическому не уступает.
  4. Асбоцементные. В принципе, неплохой дешевый вариант, но у него два достаточно серьезных недостатка: низкая механическая прочность и невозможность создания отводящих контуров.
  5. Полимерные. Их чаще всего используют, если надо отводить топочные газы с низкой температурой. В других системах дымоудаления их не применяют.

Подводя итог, можно отметить, что наилучшим вариантом сегодня является дымоход из нержавейки и керамическая модель.

Коаксиальная и раздельная системы

Все дымоотводящие системы делятся на две группы: с естественной тягой и принудительной. Первая – это когда топочные газы отводятся по вертикально установленному дымоходу, а в топку газового котла поступает воздух для сжигания топлива через поддувало. Такой котел называется с открытой топкой.

Есть котлы с закрытой топкой, в камеру сгорания которых воздух попадает через сам дымоход. Последний носит название коаксиальный. Вторая система называется раздельной. Чем они отличаются друг от друга?

Коаксиальная система дымоудаления

Коаксиальный воздуховод – это две трубы, вставленные друг в друга. Через внутреннюю трубу выводятся топочные газы, через зазор между трубами воздух поступает в топку. Идеальная конструкция с прекрасными характеристиками. Сегодня ее стали часто использовать в частном домостроении, где установлены котлы небольшой мощностью.

Коаксиальная система дымоудаления является пожаробезопасной, потому что топочные газы не нагревают внешнюю трубу. Последнюю обычно выводят через стену, около которой газовый котел и поставлен.

Раздельная система дымоудаления

Раздельная система дымоудаления – это две отдельно расположенные трубы. Через одну отводятся топочные газы, через другую в топку поступает свежий воздух. То есть, в конструкции газового котла два патрубка. Эта разновидность дымоходных труб чаще всего используется в котлах большой мощности, в которых сжигается большое количество топлива, а для этого нужен большого диаметра дымоход.

Необходимо отметить, что для систем раздельного дымоудаления можно использовать любые готовые дымоходы из разных материалов. Основное к ним требование ничем от дымоходов с естественной тягой не отличаются. Но на первом месте стоят условия пожарной безопасности.

Устройство дымоходов для атмосферных газовых котлов

Атмосферные газовые котлы относятся к категории с открытой топкой. Отличительная их особенность – это газовая горелка, в которой воздух смешивается с газом, а затем загорается на выходе из сопла. Отсюда и высокая эффективность сгорания топлива.

Что касается дымохода, то здесь чаще всего используется естественное дымоудаление с установкой трубы круглого сечения. Правда, расположение труб может быть разное.

  1. Вертикально вверх через перекрытия дома.
  2. Горизонтально по помещению с выводом на улицу, а затем вертикально за пределы крыши здания.

Устройство дымохода для атмосферных котлов ничем от обычных не отливается. Единственное, на что необходимо обратить внимание, это площадь сечения трубы. Она должна быть больше.

Требования пожарной безопасности

Правила пожарной безопасности – это основное требование, к которому привязывают выбор и монтаж трубы системы дымоудаления. Каковы эти требования.

  1. Дымовой канал должен обеспечить полный отвод топочных газов.
  2. Он должен быть устойчив к высоким температурам (+400С).
  3. Стыки между соединяемыми частями дымохода должны быть герметичны.
  4. Вертикальный дымоход может иметь отклонение от вертикали не более, чем на 30°.
  5. Нельзя устанавливать трубу с большим количеством поворотов. Максимальное их число – 3.
  6. Дымоход не должен касаться материалов, которые могут загореться от температуры топочных газов.
  7. Выводится труба за пределы кровли на 0,5 м выше конька (это минимум).
  8. Если кровельный материал – это горючее покрытие, к примеру, битумная черепица, тогда на верхнем краю дымохода устанавливается искрогаситель.
  9. На улице и в неотпаливаемых помещениях надо обеспечить утепление системы дымоудаления.
  10. Стыки двух участков не должна располагаться внутри перекрытий дома.
  11. На чердаке нельзя сооружать горизонтальные участки и повороты, здесь нельзя делать ревизии для чистки.

Расчеты

Производители газовых котлов в инструкции по применению точно обозначают, какого сечения дымоход надо устанавливать на приобретенный агрегат. Поэтому в этом плане никакие расчеты не нужны. Но если появляется необходимость провести такие расчеты, то существует несколько соотношений, которые берутся за основу.

  1. На 1 кВт тепловой энергии нужно, как минимум, 8 см² сечения трубы. В таком дымоходе скорость перемещения топочных газов должна составлять 0,15-0,6 м/с.
  2. Соотношение 1:10, где первый показатель – это площадь дымохода, второй – топки.

Как проверить тягу в дымоходе

Тяга в дымоходе – это скорость движения топочных газов. Есть специальная таблица, где этот показатель показан в зависимости от температуры газов и температуры воздуха на улице, потому что эти две величины определяют естественный отвод газовой смеси.

По таблице видно, что максимальная тяга составляет 0,818 м/с. А значит, таким приборов, как анемометр, величину тяги не определить. Потому что у него есть ограничение – 1 м/с.

Самый простой вариант – поднести к дверце топки пламя огня. Это может быть зажженная спичка, зажигалка или лист бумаги. Отклонение пламени показывает наличие или отсутствие тяги.

Ошибки встречаются нередко. К сожалению, мастера не придают значения мелочам, а таковых в системах дымоудаления котельных нет. Вот только часто встречаемые ошибки, а также рекомендации от специалистов:

  • неправильно выбраны параметры дымоотводящей трубы;
  • количество поворотов более трех;
  • есть длинные горизонтальные участки;
  • не проведено утепление на участках, которые проходят по улице или в неотапливаемых помещениях;
  • длина дымохода значительная, что создает обратную тягу за счет сильного порыва ветра;
  • отклонение верхней части дымохода от вертикали;
  • большое сечение дымоходной трубы, за счет чего быстро остывают топочные газы, отсюда снижение тяги;
  • подключение вентилятора в газовых котлах с принудительным дымоудалением должно строго проводиться по рекомендациям производителя с учетом параметров самой системы;
  • строго придерживаться требований пожарной безопасности.

И еще один вопрос, который волнует владельцев частных домов, как правильно вывести систему за пределы здания. В принципе, на этот вопрос ответ был дан в разделе устройство дымоходов. Конечно, все будет зависеть, какой конструкции труба используется. Если это коаксиальный дымоход, тогда установка проводится горизонтально, все остальные вертикально.

Возникновение пожара опасно не столько наличием открытого огня, сколько задымлением помещений. Даже небольшой очаг возгорания может вызвать появление такого количества дыма, что станет проблематичным вывод людей, затруднены . Наличие в воздухе продуктов горения затрудняет дыхание, дезориентирует в пространстве, вызывает панику. Эти угрозы требуют наличия соответствующих вентиляционных систем, осуществляющих эффективное дымоудаление, а также способствующих оперативному решению возникших проблем. Такие системы существуют, они активно используются в разных зданиях, промышленных цехах или иных сооружениях.

Система дымоудаления – специализированный комплекс вентиляционного оборудования, предназначенный для оперативного вывода продуктов горения из помещений, освобождения от дыма путей эвакуации людей и способствующий правильной организации мероприятий по устранению возгорания.

Основным участком охвата системы являются лестничные клетки, шахты лифтов, коридоры по пути следования при эвакуации. Выполняются следующие функции:

  • Сокращается возможность распространения огня.

  • Снижается количество дыма.

  • Обеспечивается возможность нормального пожаротушения.

  • Снижается температура воздуха.

  • Осуществляется контроль и оповещение о возникшем возгорании.

  • Открытие люков, клапанов, окон для эффективного вывода продуктов горения.

Комплекс дымоудаления – протяженная и сложная система, действующая по разным схемам, дающая возможность перераспределения воздушных потоков по мере необходимости.

Конструкция и устройство

Вентиляция дымоудаления состоит из следующих узлов:

  • Вентиляторы дымоудаления. Осуществляют вытяжку или приток свежего воздуха в задымленные помещения.

Мнение эксперта

Федоров Максим Олегович

Важно! В любом случае используются все возможные средства, позволяющие в кратчайшие сроки устранить задымление и восстановить нормальный микроклимат в помещениях, соответствующий санитарным нормам.

Оборудование, входящее в состав комплекса

В качестве вентиляторов дымоудаления используются устройства, обладающее соответствующими характеристиками. Условия эксплуатации требуют наличия высокой категории теплостойкости – от 400°С до 600°С. Рабочие колеса могут изготавливаться из нержавеющей стали или обладать защитным покрытием, предохраняющим от воздействия агрессивных продуктов горения.

Воздуховоды дымоудаления изготавливаются из углеродистой или оцинкованной стали и имеют повышенные требования к герметичности – категории «Н» (нормальное исполнение) или «П» (плотное).

Люки дымоудаления, используемые для системы, имеют нормально закрытое положение, открываются по команде с датчиков или с пульта управления. Все элементы должны быть рассчитаны на работу при высоких температурах и в агрессивной среде.

Расчет дымоудаления

Расчет системы – сложная многоступенчатая задача. Определяются все возможные каналы отвода газов или продуктов горения – от уже имеющихся коридоров, лестничных клеток и т.д. до новых, дополнительно установленных . По величине каналов или объемам помещений вычисляется производительность вентиляторов, по количеству помещений и коридоров определяется число клапанов дымоудаления, а также противопожарных клапанов. Какой-то единой методики расчета не существует, поскольку конфигурация помещений и воздуховодов для вывода дыма может быть разной.

Методика расчета сложна и требует участия подготовленных специалистов. Если по каким-либо причинам онлайн-калькуляторы не подходят для решения возникших вопросов, то следует обратиться в специализированную организацию и заказать расчет у них. Потребуется обследование специалистами имеющихся помещений, возможных путей вывода продуктов горения, определение порядка эвакуации людей и т. д. Все эти расчеты должны опираться на требования СНиП, соответствовать противопожарным и санитарным нормам.

Мнение эксперта

Инженер теплоснабжения и вентиляции РСВ

Федоров Максим Олегович

Важно! Самостоятельный расчет комплекса дымоудаления – высокий риск свершения ошибок, происходящих от отсутствия опыта.

Эксплуатация

Налаженная система вывода продуктов горения эксплуатируется в соответствии с требованиями нормативов или СНиП. Составляется график проверок оборудования, производятся все необходимые мероприятия по поддержанию всех элементов в рабочем состоянии. Сложность в том, что система не работает постоянно, простаивающее оборудование имеет высокую вероятность отказа. Ответственность комплекса велика, экономия на обслуживании, контрольных мероприятиях недопустима.

Системы дымоудаления зачастую важнее систем пожаротушения, поскольку даже при малом очаге горения, не угрожающем никаким материальным ценностям или людям, величина задымления может оказаться критической и повлечь за собой сложности в осуществлении мероприятий по тушению пожара или даже человеческие жертвы. Отравление продуктами горения вызывает панику, дезориентацию, когда человек не понимает, в какую сторону ему следует бежать. Ответственность высока и требует соответствующего отношения со стороны руководства и персонала.

Как работает клапан дымоудаления

Как часто бывает, установив у себя дома котёл отопления, мы только потом озабочены проблемой отвода продуктов горения. А ведь это далеко не такая простая задача, как кажется. К счастью, современные технические средства позволяют быстро решить эту проблему без особых хлопот, и с минимальными финансовыми затратами.

Кроме этого, при горении котёл расходует значительное количество кислорода. Если кислород будет забираться из внутреннего пространства помещения, это может создавать сквозняки.

Кроме сквозняков, такое решение проблемы в целом существенно ухудшает микроклимат в помещении, и сильно понижает температуру. Ведь холодный воздух будет затягиваться внутрь помещения, и на его прогрев до комнатной температуры будет затрачиваться значительное количество энергии котла. Также это сводит на нет применение эффективных систем защиты от холода.

Будет гораздо выгоднее подавать воздух снаружи помещения непосредственно к котлу, не вступая в контакт с воздухом внутри помещения. способны решить одновременно и проблему дыма, и проблему питания котла кислородом.

Коаксиальная

Дымоудаление по коаксиальной системе — наиболее простой и недорогой вариант, как для частных домов, так и для небольших общественных и торговых площадей. Система состоит из двух труб: одной большего диаметра, другой — меньшего, проложенной одна внутри другой.

Обычно диаметр большой трубы составляет 100 мм, а меньшей — 60. Диаметр 60 мм вполне достаточен для работы большинства небольших газовых котлов. В случае использования котлов большой мощности необходима более толстая труба.

Внутренняя труба используется для отвода продуктов горения за пределы внутренних помещений. Дым, углекислый и угарный газ, водяной пар покидают помещение и выходят наружу, используя силу тяги самого котла.

Внешняя труба служит для обеспечения доступа воздуха снаружи помещения для поддержания горения. Собственно, воздух для питания котла поступает по пространству между внутренней и наружной трубой.

Коаксиальная система менее пожароопасна, так как температура наружной трубы низкая, и вероятность контакта с внутренней дымоотводящей трубой горючих предметов и веществ невелика. Но элементы этой системы стоят дорого, и если протяжённость дымохода велика, то есть смысл использовать другую — раздельную систему дымоудаления.

Раздельная

В раздельной системе дымоудаления используются две трубы — по одной воздух поступает в котёл, по другой — выводятся продукты горения. Эта система подходит для более мощных котлов, которые производят достаточно большое количество дыма.

В случае раздельного дымоудаления нет особых ограничений по типу котла — можно применять и котлы на газе, и на твёрдом топливе, и на мазуте.

Эта система достаточно недорога при монтаже. Ведь котёл часто располагают в специальном помещении, обеспечить подачу кислорода в которое достаточно просто.

Здесь выгоднее использовать два отдельных трубопровода — для подачи воздуха и для отвода дыма. Кроме этого, для подачи воздуха могут использоваться обычные элементы вентиляционных систем, имеющиеся в любом строительном магазине.

Особенности монтажа

Обе системы дымоудаления монтируют с использованием стандартных узлов: при помощи патрубков и адаптеров. Патрубки — прямолинейные участки системы. Они соединяются друг с другом, и крепятся к стенам здания при помощи специальных крепежей. Адаптеры используются для того, чтобы обеспечить соединение патрубков на сложных участках.

Но здесь тоже не так всё просто. Адаптеры используют разного типа: первый используется, если изгиб патрубка осуществляется в горизонтальной плоскости, а второй вид, если изгиб в вертикальной плоскости. Кроме этого, адаптеры используют для прохода через сгораемые перекрытия и некоторые другие участки.

Система дымоудаления обязательно делается разборной, ведь в процессе эксплуатации возникает необходимость периодической чистки от сажи.

Стоит отметить, что не все котлы изначально предназначены для той системы дымоудаления, которую вы планируете применить. Некоторые из них потребуют специальных адаптеров-переходников, которые позволят перейти от коаксиальных патрубков к обычным, или наоборот.

Просмотров