Принцип работы холодильной машины. Описание принципа работы холодильной установки Устройство промышленного холодильного оборудования

Чтобы сориентироваться при выходе из строя кухонного оборудования, многие домохозяйки вынуждены разбираться в принципе работы многих устройств, таких как: электроплита, микроволновая печь, холодильник и другие. Главная функция холодильной камеры - сохранение питательных продуктов в свежем состоянии, поэтому она должна работать постоянно, а услугами специалиста по ремонту невозможно воспользоваться мгновенно. Понимание того, как работает холодильник, поможет сэкономить финансовые и временные ресурсы, а многие неисправности можно будет починить своими руками.

Внутреннее устройство холодильника

Всем известно как работает холодильник, простыми словами - это оборудование замораживает и охлаждает самые разные продукты, позволяя избежать их порчи в течение некоторого времени.

При этом далеко не все знают определенные особенности данного устройства: из чего состоит холодильник, откуда берется холод во внутренней плоскости камеры, как он создается рефрижератором и почему устройство время от времени выключается.

Чтобы разобраться в данных вопросах, необходимо подробно рассмотреть принцип работы холодильника . Для начала отметим, что холодные воздушные массы возникают не сами: уменьшение температуры воздуха осуществляется внутри камеры в процессе функционирования агрегата.

Данное холодильное оборудование включает в себя несколько основных частей:

  • хладагент;
  • испаритель;
  • конденсатор;
  • компрессор.

Компрессор - это своеобразное сердце любой холодильной установки . Этот элемент отвечает за циркуляцию хладагента по большому количеству специальных трубочек, часть которых расположена сзади холодильника. Остальные части замаскированы во внутренней части камеры под панелью.

При работе компрессор, как и всякий мотор, подвергается значительному нагреву, поэтому ему необходимо некоторое время для остывания. Чтобы этот агрегат не утратил работоспособность из-за перегрева, в него встроено реле, размыкающее электроцепь при определенных температурных показателях.

Трубки, расположенные на наружной поверхности холодильного оборудования - это конденсатор. Он предназначен для выделения тепловой энергии наружу. Компрессор, осуществляя перекачку хладагента, отправляет его внутрь конденсатора посредством высокого давления. В итоге вещество с газообразной структурой (изобутан или фреон) становится жидким и начинает нагреваться. Лишнее тепло при этом рассеивается в помещении, чтобы охлаждение хладагента произошло естественным путем. Именно по этой причине запрещено устанавливать нагревательные приборы рядом с холодильниками.

Хозяева, которые знают о принципе работы холодильного шкафа, стараются устроить своему «кухонному помощнику» самые оптимальные условия для охлаждения конденсатора и компрессора. Это позволяет продлить срок его эксплуатации .

Для получения холода во внутренней камере есть иная часть трубочной системы, в которое сжиженное газообразное вещество отправляется после конденсатора - она называется испарителем. Этот элемент отделен от конденсатора осушающим фильтром и капилляром. Прицип охлаждения внутри камеры :

  • Оказываясь в испарителе, фреон начинает закипать и расширяться, вновь преобразуясь в газ. При этом осуществляется поглощение тепловой энергии.
  • Трубки, находящиеся в камере, охлаждают не только воздушные массы агрегата, но и охлаждаются сами.
  • Затем хладагент снова отправляется в компрессор, и цикл повторяется.

Для того чтобы питательные продукты не заледенели внутри холодильника, в оборудование встроен терморегулятор. Специальная шкала дает возможность выставить необходимую степень охлаждения, и после достижения нужных значений оборудование автоматически выключается.

Однокамерные и двухкамерные модели

Агрегат, охлаждающий воздух, в каждом рефрижераторе имеет общий принцип устройства. Однако отличия в функционировании разного оборудования все же имеются. Они основываются на особенностях перемещения хладагента в холодильных шкафах с одной или парой камер.

Схема, которая была представлена чуть выше, характерна для моделей однокамерного типа. Независимо от места расположения испарителя принцип функционирования будет единым . Однако если морозильная камера расположена под или над охлаждающим отсеком, то для стабильной и полноценной работы рефрижератора необходим дополнительный компрессор. Для морозилки принцип работы будет прежним.

Охлаждающий отсек, в котором температурные показатели не опускаются ниже нулевой отметки, запускается лишь после того, как морозильник охладился в достаточной степени и выключился. Как раз в это мгновение хладагент из морозильной системы отправляется в камеры с положительной температурой, и цикл испарения/конденсации проходит уже на более низком уровне, потому невозможно точно сказать, сколько нужно проработать холодильному оборудованию до автоматического выключения. Тут все зависит от настройки терморегулятора и объема камеры-морозилки.

Функция быстрой заморозки

Данная функция характерна для двухкамерных холодильников. В таком режиме холодильник может беспрерывно работать достаточно долго. Предназначена же быстрая заморозка для эффективного промораживания продуктов в больших объемах .

После активации опции, на панели зажигаются специальные светодиодные индикаторы, показывающие, что компрессор запущен. Тут нужно учитывать то, что функционирование агрегата не будет остановлено автоматически, а слишком долгая работа холодильника может негативно сказаться на его состоянии.

После ручного отключения установки индикаторы сами погаснут, а компрессорный привод выключится.

Современные холодильники оснащены большим количеством самых разных функций. И сегодня домохозяйки знают о существовании функции автоматической разморозки. Необмерзающие и капельные холодильные системы сделали человеческую жизнь гораздо проще, но принцип действия холодильника остался прежним.

Хладопроизводительность - это количество тепла, которое холодильная установка способна отвести от охлаждаемой жидкости. Именно это является важнейшим показателем, отражающим эффективность работы холодильного агрегата и влияет на его стоимость, поэтому при выборе того или холодильного оборудования необходимо главным образом обращать внимание на хладопроизводительность данного агрегата. Хладопроизводительность рассчитывается при подборе агрегата и может варьироваться от нескольких единиц, до нескольких тысяч кВт.

Хладагент - рабочее вещество холодильной машины, которое при кипении и в процессе изотермического расширения отнимает теплоту от охлаждаемого объекта и затем после сжатия передаёт её охлаждающей среде за счёт конденсации (воде, воздуху и т. п.). Ранее в холодильных машинах чаще всего использовался фреон, однако сейчас его заменяют альтернативными веществами, так как он наносит вред экологии.

Мощность - это количество холода, вырабатываемого агрегатом за единицу времени. Низкотемпературное оборудование, как правило, обладает большей мощностью, чем средне-температурное, однако не всегда. Чем больше мощность, тем быстрее холодильный агрегат вырабатывает необходимую температуру и точнее корректирует последующую работу холодильной машины при изменении условий окружающей среды.

Площадь выкладки - это пространство, предусмотренное для размещения товара, который видит покупатель. Чем больше соотношение площади выкладки и общей площади торгового оборудования, тем лучше. Например: площадь выкладки в данном случае состоит из полки внутри застеклённой витрины и небольшой верхней полки, находящейся снаружи. Глубина выкладки при этом составляет 775 мм (585 + 190) при истинной глубине витрины 795 мм. Площадь выкладки несомненно увеличивается, если витрина является многоярусной, однако и в этом случае надо помнить, что если между ярусами будет слишком маленькое расстояние, или они все полки будут одной длинны, то они будут перекрывать товар, размещённый на нижних полках.

Энергопотребление - это количество электроэнергии, потребляемой холодильной машиной. Существуют различные показатели энергопотребления - сколько электричества агрегат потребляет в сутки, в неделю, в год, или на единицу товара. Этот параметр является крайне важным при выборе холодильного оборудования и типа холодильного агрегата (выносного или встроенного), так как энергозатраты на эксплуатацию данного оборудования могут существенно варьироваться.

Температура внешней среды так же играет немаловажную роль при выборе холодильного оборудования. Это происходит так как хладагент в процессе работы через стенки трубок постоянно соприкасается с внешней средой (воздухом). В результате термообмена и идёт охлаждение воздуха, однако, если температура окружающей среды не соответствует положенной, то хладагент не успевает пройти весь цикл преобразований из жидкого состояние в газообразное, что приводит к ухудшению работы холодильного оборудования, или его поломке. Исходя из этого параметра, холодильное оборудование может быть предназначено для установки только в помещении, или на улице.

2. Принцип работы холодильного оборудования

Холодильный агрегат представляет собой закрытую цикличную систему, целью которой является охлаждение воздуха. Главными составными частями являются испаритель, компрессор, ресивер и конденсатор. Между собой эти элементы связаны соединительными трубками, внутри которых находится хладагент (вещество, которое, благодаря своей теплопроводности и способности легко переходить из одного состояния в другое, отнимает тепловую энергию охлаждаемого вещества и передает ее окружающей среде).

Компрессор вытягивает газообразный хладагент из испарителя и направляет его в конденсатор, где он быстро остывает под действием прохладного воздуха, нагнетаемого вентиляторами, и переходит в жидкое состояние, отдавая тепло. На следующем этапе, в ресивере, хладагент накапливается. В силу высокой теплопроводности, когда вещество попадает в испаритель, оно закипает и превращается в пар, тем самым, забирая тепло из окружающего его воздуха. Именно на этом этапе агрегат вырабатывает холод. Парообразный хладагент затем так же, под действием компрессора попадает в конденсатор.
Таким образом, холодильный агрегат вырабатывает как холод, так и тепло. Это крайне важно, когда речь идёт о выборе выносной или встроенной холодильной установки.

Для больших помещений (от 100 м²) нередко используются выносные агрегаты, включающие в себя автономный компрессор, испаритель и конденсатор. Они устанавливаются в отдельном помещении вне торгового зала и при помощи специальных труб поставляют холодный воздух непосредственно в холодильные машины. Так как холодильный агрегат вынесен за пределы торгового зала это, во-первых, позволяет увеличить площадь выкладки, так как не занимает место непосредственно внутри холодильного оборудования, во-вторых, не производит никакого шума. К тому же каждый холодильный агрегат вырабатывает тепло в окружающую среду. Чем больше холодильных агрегатов находятся в помещении, тем острее возникает вопрос об охлаждении, кондиционировании данного помещения, тем самым это требует больших затрат энергии. Выносной агрегат позволяет избежать данной проблемы, так как всё тепло, вырабатываемое данной установкой, естественным путём выходит за пределы помещения. К тому же выносной холодильный агрегат, вырабатывающий холод для нескольких холодильных машин значительно более экономичен с точки зрения энергопотребления. Однако есть и некоторые недостатки - обслуживание и устанавливка выносной системы генерации холода - это достаточно трудоёмкий процесс, который может выполнить только специалист.

Для небольших помещений (менее 100 м²) больше подходит оборудование со встроенным агрегатом. Эксплуатация и установка оборудования со встроенным холодильным агрегатом значительно проще, чем оборудование с выносным холодом и не требует дополнительного помещения вне торгового зала. Недостатками в данном случае является шум, производимый агрегатом, и сокращение площади выкладки из-за расположения блока агрегата непосредственно внутри холодильной машины. При большом количестве холодильных машин со встроенным агрегатом возникает вопрос об устранении тепла, которое они вырабатывают при работе. Таким образом, оборудование со встроенным агрегатом значительно менее экономично, чем холодильные машины с выносным холодом.

Процесс охлаждения в холодильной машине основан на физическом явлении поглощения тепла при кипении () жидкости. Температура кипения жидкости зависит от физической природы жидкости и от давления окружающей" среды. Чем выше давление, тем выше температура жидкости и, наоборот, чем ниже давление, тем при более низкой температуре жидкость закипает и испаряется. При одинаковых условиях разные жидкости имеют разные температуры кипения, так, например, при нормальном атмосферном давлении вода закипает при температуре +100°С, этиловый спирт +78°С, R-22 минус 40,8°С, фреон R-502 минус 45,6°С, фреон R-407 минус 43,56°С, жидкий азот минус 174°С.

Жидкий фреон, являющийся в настоящее время основным хладагентом холодильной машины, находящийся в открытом сосуде при нормальном атмосферном давлении, немедленно вскипает. При этом происходит интенсивное поглощение тепла из окружающей среды, сосуд покрывается инеем из-за конденсации и замораживания паров воды из окружающего воздуха. Процесс кипения жидкого фреона будет продолжаться до тех пор, пока весь фреон не перейдет в газообразное состояние, либо давление над жидким фреоном не возрастет до определенного уровня и при этом не прекратится процесс испарения его из жидкой фазы.

Аналогичный процесс кипения хладагента происходит в холодильной машине, с той лишь разницей, что кипение хладагента происходит не в открытом сосуде, а в специальном, герметичном узле- теплообменнике, который носит название - . При этом кипящий в трубках испарителя хладагент активно поглощает тепло от материала трубок испарителя. В свою очередь материал трубок испарителя омывается жидкостью или воздухом и как результат процесса происходит охлаждение жидкости или воздуха.

Для того, чтобы процесс кипения хладагента в испарителе происходил непрерывно, необходимо постоянно из испарителя удалять газообразный и «подливать» жидкий хладагент.

Для отвода выделяемого тепла используется алюминиевый теплообменник с оребренной поверхностью, называемый конденсатором. Для удаления паров хладагента из испарителя и создания необходимого для конденсации давления используется специальный насос - компрессор.

Элементом холодильной установки является также регулятор потока хладагента, так называемая дроссилирующая . Все элементы холодильной машины соединяются трубопроводом в последовательную цепь, обеспечивая тем самым замкнутую систему.

Принцип работы холодильных установок. Видео

Обычному человеку, как правило, нет необходимости разбираться в принципе действия холодильной машины, для него важен результат. Результатом работы холодильной установки является: охлажденные продукты – от замороженных овощей, до мясо-молочной продукции или например охлажденный воздух, если речь идет о сплит-системах.

Другое же дело, когда холодильные машины выходит из строя и для проведения ремонта холодильных установок требуется вызов специалиста. В данном случае уже было бы не плохо разбираться в принципе работы таких агрегатов. Хотя бы для того, чтобы понимать необходимость замены или ремонта составляющей холодильной машины.

Основное назначение холодильной установки – это забор тепла от охлаждаемого тела и перенос этого тепла или энергии другому объекту или телу. Для понимания процесса требуется уяснить простую вещь – если мы нагреваем или сжимаем тело, то мы сообщаем этому телу энергию (или тепло), охлаждая и расширяя, мы отбираем энергию. Это основной принцип, на основе которого и построен перенос тепла.

В холодильной машине для переноса тепла применяются хладагенты – рабочие вещества холодильной машины, которые при кипении и в процессе изотермического расширения отнимают теплоту от охлаждаемого объекта и затем после сжатия передают её охлаждающей среде за счёт конденсации

Холодильный компрессор 1 отсасывает газообразный хладагент – фреон из испарителей 3, сжимает его и нагнетает в конденсатор 2. В конденсаторе 2 фреон конденсируется и переходит в жидкое состояние. Из конденсатора 2 жидкий хладагент попадает в ресивер 4, где происходит его накопление. Ресивер оснащен запорными вентилями 19 на входе и выходе. Из ресивера хладагент поступает в фильтр-осушитель 9, где происходит удаление остатков влаги, примесей и загрязнений, после этого проходит через смотровое стекло с индикатором влажности 12, соленоидный вентиль 7 и дросселируется терморегулирующим вентилем 17 в испаритель 3.

В испарителе хладагент кипит, забирая тепло от объекта охлаждения. Пары хладагента из испарителя через фильтр на всасывающей магистрали 11, где они отчищаются от загрязнений, и отделитель жидкости 5 поступают в компрессор 1. Затем цикл работы холодильной установки повторяется.

Отделитель жидкости 5 предотвращает попадание жидкого хладагента в компрессор. Для обеспечения гарантированного возврата масла в картер компрессора, на выходе из компрессора устанавливаться маслоотделитель 6. При этом масло через запорный вентиль 24, фильтр 10 и смотровое стекло 13 по линии возврата – поступает в компрессор.

Виброизоляторы 25, 26 на всасывающей и нагнетательной магистралях гасят вибрации при работе компрессора и препятствуют их распространению по холодильному контуру.

Компрессор оснащён картерным нагревателем 21 и двумя запорными вентилями 20. Картерный нагреватель 21 выпаривает хладагент из масла, предотвращая конденсацию хладагента в картере компрессора во время его стоянки и поддержания заданной температуры масла.

Охлаждение различных объектов - продуктов питания, воды, других жидкостей, воздуха, технических газов и др. до температур ниже температуры окружающей среды происходит с помощью холодильных машин различных типов. Холодильная машина по большому счету не производит холод, она является лишь своеобразным насосом, который переносит теплоту от менее нагретых тел к более нагретым. Основан же процесс охлаждения на постоянном повторении т.н. обратного термодинамического или другими словами холодильного цикла. В самом распространенном парокомпрессионном холодильном цикле перенос теплоты происходит при фазовых превращениях хладагента – его испарении (кипении) и конденсации за счет потребления подведенной извне энергии.

Основными элементами холодильной машины, с помощью которых реализуется ее рабочий цикл, являются:

  • компрессор – элемент холодильного цикла, обеспечивающий повышение давления хладагента и его циркуляцию в контуре холодильной машины;
  • дросселирующее устройство (капиллярная трубка, терморегулирующий вентиль) служит регулирования количества хладагента, попадающего в испаритель в зависимости от перегрева на испарителе.
  • испаритель (охладитель) – теплообменник, в котором происходит кипение хладагента (с поглощением тепла) и непосредственно сам процесс охлаждения;
  • конденсатор – теплообменник, в котором в результате фазового перехода хладагента из газообразного состояния в жидкое, отведенная теплота сбрасывается в окружающую среду.

При этом необходимо наличие в холодильной машине других вспомогательных элементов, – электромагнитные (соленоидные) вентили, контрольно-измерительные приборы, смотровые стекла, фильтры-осушители и т.д. Все элементы соединены между собой в герметичный внутренний контур с помощью трубопроводов с теплоизоляцией. Контур холодильной машины заполняется хладагентом в необходимом количестве. Основной энергетической характеристикой холодильной машины является холодильный коэффициент, который определяется отношением количества тепла, отведенного от охлаждаемого источника, к затраченной энергии.

Холодильные машины в зависимости от принципов работы и применяемого хладагента бывают нескольких типов. Наиболее распространенные парокомпрессионные, пароэжекторные, абсорбционные, воздушные и термоэлектрические.

Хладагент


Хладагент – рабочее вещество холодильного цикла, основной характеристикой которого является низкая температура кипения. В качестве хладагентов чаще всего применяют различные углеводородные соединения, которые могут содержать атомы хлора, фтора или брома. Также хладагентом могут быть аммиак, углекислый газ, пропан и т.д. Реже в качестве хладагента применяют воздух. Всего известно около сотни типов хладагентов, но изготавливается промышленным способом и широко применяется в холодильной, криогенной технике, кондиционировании воздуха и других отраслях всего около 40. Это R12, R22, R134A, R407C, R404A, R410A, R717, R507 и другие. Основная область применения хладагентов – это холодильная и химическая промышленность. Кроме того, некоторые фреоны используют в качестве пропеллентов при производстве различной продукции в аэрозольной упаковке; вспенивателей при производстве полиуретановых и теплоизолирующих изделий; растворителей; а также в качестве веществ, тормозящих реакцию горения, для систем пожаротушения различных объектов повышенной опасности – тепловых и атомных электростанций, гражданских морских судов, боевых кораблей и подводных лодок.

Терморегулирующий вентиль (ТРВ)


Терморегулирующий вентиль (ТРВ) – один из основных компонентов холодильных машин, известен как наиболее распространенный элемент для дросселирования и точного регулирования подачи хладагента в испаритель. ТРВ использует в качестве регулятора расхода хладагента клапан игольчатого типа, примыкающий к основанию тарельчатой формы. Количество и расход хладагента определяется проходным сечением ТРВ и зависит от температуры на выходе из испарителя. При изменении температуры хладагента на выходе из испарителя, давление внутри этой системы меняется. При изменении давления меняется проходное сечение ТРВ и, соответственно, меняется расход хладагента.

Термосистема заполнена на заводе-изготовителе точно определенным количеством того же хладагента, который является рабочим веществом данной холодильной машины. Задача ТРВ – дросселирование и регулирование расхода хладагента на входе в испаритель таким образом, чтобы в нем наиболее эффективно проходил процесс охлаждения. При этом хладагент должен полностью перейти в парообразное состояние. Это необходимо для надежной работы компрессора и исключения его работы т.н. «влажным» ходом (т.е. сжатие жидкости). Термобаллон крепится на трубопровод между испарителем и компрессором, причем в месте крепления необходимо обеспечить надежный термический контакт и теплоизоляцию от воздействия температуры окружающей среды. Последние 15-20 лет в холодильной технике стали получать широкое распространение электронные ТРВ. Они отличаются тем, что у них отсутствует выносная термосистема, а ее роль играет терморезистор, закрепленный на трубопроводе за испарителем, связанный кабелем с микропроцессорным контролером, который в свою очередь управляет электронным ТРВ и вообще всеми рабочими процессами холодильной машины.


Соленоидный вентиль служит для двухпозиционного регулирования («открыто-закрыто») подачи хладагента в испаритель холодильной машины либо для открытия-закрытия от внешнего сигнала определенных участков трубопроводов. При отсутствии питания на катушке тарелка клапана под воздействием специальной пружины удерживает соленоидный вентиль закрытым. При подаче питания сердечник электромагнита, соединенный штоком с тарелкой, преодолевает усилие пружины, втягивается в катушку, тем самым приподнимая тарелку и открывая проходное сечение вентиля для подачи хладагента.


Смотровое стекло в холодильной машине предназначено для определения:

  1. состояния хладагента;
  2. наличие влаги в хладагенте, которое определяется цветом индикатора.

Смотровое стекло обычно монтируют в трубопроводе на выходе из накопительного ресивера. Конструктивно смотровое стекло представляет собой металлический герметичный корпус с окном из прозрачного стекла. Если при работе холодильной машины в окне наблюдается поток жидкости с отдельными пузырями парообразного хладагента, то это может свидетельствовать о недостаточной заправке или других неисправностях в ее функционировании. Может устанавливаться и второе смотровое стекло на другом конце указанного выше трубопровода, в непосредственной близости от регулятора расхода, которым может быть соленоидный вентиль, ТРВ или капиллярная трубка. Цвет индикатора показывает наличие или отсутствие влаги в холодильном контуре.


Фильтр-осушитель или цеолитовый патрон еще один важный элемент контура холодильных машин. Он необходим для удаления влаги и механических загрязнений из хладагента, тем самым защищая от засорения ТРВ. Обычно он монтируется с помощью паяных или штуцерных соединений непосредственно в трубопровод между конденсатором и ТРВ (соленоидным вентилем, капиллярной трубкой). Чаще всего конструктивно представляет собой отрезок медной трубы диаметром 16…30 и длиной 90…170 мм, закатанный с обеих сторон и с присоединительными патрубками. Внутри по краям установлены две металлические фильтрующие сетки, между которыми расположен гранулированный (1,5…3,0 мм) адсорбент, обычно это синтетический цеолит. Это т.н. разовый фильтр-осушитель, но существуют многоразовые конструкции фильтров с разборным корпусом и резьбовыми трубопроводными соединениями, требующими только время от времени замены внутреннего цеолитового картриджа. Замена разового фильтра- осушителя или картриджа необходима после каждого вскрытия внутреннего контура холодильной машины. Существуют одно-направленные фильтры, предназначенные для работы в системах «только холод» и дву-направленные, используемые в агрегатах «тепло-холод».

Ресивер


Ресивер – герметичный цилиндрический накопительный бак различной емкости, изготовленный из стального листа, и служащий для сбора жидкого хладагента и его равномерной подачи к регулятору расхода (ТРВ, капиллярная трубка) и в испаритель. Существуют ресиверы как вертикального, так и горизонтального типа. Различают линейные, дренажные, циркуляционные и защитные ресиверы. Линейный ресивер устанавливается с помощью паяных соединений в трубопровод между конденсатором и ТРВ и выполняет следующие функции:

  • обеспечивает непрерывную и бесперебойную работу холодильной машины при различных тепловых нагрузках;
  • является гидравлическим затвором, препятствующим попаданию пара хладагента в ТРВ;
  • выполняет функцию масло- и воздухоотделителя;
  • освобождает трубы конденсатора от жидкого хладагента.

Дренажные ресиверы служат для сбора и хранение всего количества заправленного хладагента на время ремонтных и сервисных работ, связанных с разгерметизацией внутреннего контура холодильной машины.

Циркуляционные ресиверы применяют в насосно-циркуляционных схемах подачи жидкого хладагента в испаритель для обеспечения непрерывной работы насоса и монтируют в трубопровод после испарителя в точку с самой низкой отметкой по высоте для свободного слива в него жидкости.

Защитные ресиверы предназначены для безнасосных схем подачи фреона в испаритель, их устанавливают совместно с отделителями жидкости во всасывающий трубопровод между испарителем и компрессором. Они служат для защиты компрессора от возможной работы «влажным» ходом.


Регулятор давления – автоматически управляемый регулирующий клапан, применяемый для снижения либо поддержания давления хладагента путем изменения гидравлического сопротивления потоку проходящего через него жидкого хладагента. Конструктивно состоит из трех основных элементов: регулирующего клапана, его исполнительного механизма и измерительного элемента. Исполнительный механизм непосредственно воздействует на тарелку клапана, изменяя или закрывая проходное сечение. Измерительный элемент сравнивает текущее и заданное значение давления хладагента и формирует управляющий сигнал для исполнительного механизма регулирующего клапана. В холодильной технике существуют регуляторы низкого давления, чаще называемые прессостатами. Они управляют давлением кипения в испарителе, их устанавливают во всасывающий трубопровод за испарителем. Регуляторы высокого давления называют маноконтроллерами. Их чаще всего применяют в холодильных машинах с воздушным охлаждением конденсатора для поддержания минимально необходимого давления конденсации при понижении температуры наружного воздуха в переходный и холодный период года, обеспечивая тем самым т.н. зимнее регулирование. Маноконтроллер устанавливают в нагнетательный трубопровод между компрессором и конденсатором.

Просмотров