Гироскутер: устройство, из чего состоит, схема и конструкция мини-сигвея. Сигвей своими руками Сбор механических деталей


В этой статье будет рассмотрено создание самобалансирующегося средства передвижения или просто «Сегвей». Практически все материалы для создания данного устройства легкодоступны.

Само устройство представляет из себя платформу на которой стоит водитель. Путем наклона туловища осуществляется управление двумя электрическими двигателями посредством цепи схем и микроконтроллеров, отвечающих за балансировку.

Материалы:


-Беспроводной модуль управления XBee.
-микроконтроллер Arduino
-аккумуляторы
-датчик InvenSense MPU-6050 на модуле “GY-521”,
-деревянные бруски
-кнопка
-два колеса
и прочее, указанное в статье и на фотографиях.

Шаг первый: Определение требуемых характеристик и проектирование системы.

При создании этого устройства автор старался, чтобы оно укладывалась в такие параметры как:
-проходимость и мощность, необходимая для свободного перемещения даже по гравию
-аккумуляторы достаточной емкостью, чтобы обеспечить как минимум один час беспрерывной работы устройства
-обеспечить возможность беспроводного управления, а так же фиксирование данных о работе устройства на SD-карту для выявления и устранения неисправностей.

Кроме того желательно, чтобы затраты на создание подобного устройства были меньше чем заказ оригинального внедорожного гироскутера.

Согласно приведенной ниже диаграмме, вы можете увидеть схему электрической цепи самобалансирующегося транспортного средства.


На следующем изображении показана система работы привода гироскутера.


Выбор микроконтроллера для управления системами Сегвея разнообразен, автор система Arduino наиболее предпочтительна из-за своих ценовых категорий. Подойдут такие контроллеры как Arduino Uno, Arduino Nano или можно взять ATmega 328 для использования в качестве отдельного чипа.

Чтобы запитать сдвоенную мостовую схему управления двигателей необходимо напряжение питания в 24 В, этого напряжения легко достигнуть путем последовательного подключения 12 В автомобильных аккумуляторов.

Система построена так, что питание на двигатели подается, только пока нажата кнопка старта, поэтому для быстрой остановки достаточно просто ее отпустить. При этом платформа Arduino должна поддерживать последовательную связь, как с мостовой схемой управления двигателей, так и с беспроводным модулем управления.

За счет датчика InvenSense MPU-6050 на модуле “GY-521”, обрабатывающего ускорение и несущего в себе функции гироскопа, измеряются параметры наклона. Датчик был расположен на двух отдельных платах расширения. По шине l2c поддерживается связь с микроконтроллером Arduino. Причем датчик наклона с адресом 0x68 был запрограммирован таким образом, чтобы выполнять опрос каждый 20 мс и обеспечивать прерывание микроконтроллера Arduino. Другой датчик имеет адрес 0x69 и он подтянут прямо к Arduino.

Когда пользователь встает на платформу скутера, срабатывает концевой выключатель нагрузки, который и активирует режим алгоритма для балансировки Сегвея.

Шаг второй: Создание корпуса гироскутера и установка основных элементов.


После определения основной концепции схемы работы гироскутера, автор приступил к непосредственной сборке его корпуса и установке основных деталей. В качестве основного материала послужили деревянные доски и бруски. Дерево мало весит, что положительно отразится на длительности заряда аккумуляторов, кроме того древесина легко обрабатывается и является изолятором. Из этих досок был сделан короб, в который будут устанавливаться аккумуляторы, двигатели и микросхемы. Таким образом, получилась U-образная деревянная деталь, на которую за счет болтов крепятся колеса и двигатели.

Передача мощности двигателей на колеса будет идти за счет зубчатой передачи. Во время укладки основных компонентов в корпус Сегвея очень важно проследить, чтобы вес распределялся равномерно при приведении Сегвея в рабочее вертикальное положение. Поэтому если не учесть распределение веса от тяжелых аккумуляторов, то работа балансировки устройства будет затруднена.

В данном случае автор расположил аккумуляторы сзади, так, что компенсировать вес двигателя, который находится в центре корпуса устройства. Электронные составляющие устройства были уложены в место между двигателем и аккумуляторами. Для последующего тестирования так же была прикреплена временная кнопка старта на ручке Сегвея.

Шаг третий: Электрическая схема.



Согласно приведенной схеме была осуществлена вся провода в корпусе Сегвея. Так же в соответствии с таблицей приведенной ниже были подключены все выводы микроконтроллера Arduino к мостовой схеме управления двигателем, а так же к датчикам балансировки.


На следующей схеме, показано установленный горизонтально датчик наклона, датчик управления же был установлен вертикально по оси У.



Шаг четвертый: Тестирование и настройка устройства.


После проведения предыдущих этапов, автор получил модель Сегвея для тестирования.

При проведении тестирования важно принять во внимание такие факторы как безопасность зоны тестирования, а так же защитная экипировка в виде защитных щитков и шлема для водителя.

Гироскутер внутри

Основные детали

Из чего состоит гироскутер? Если взглянуть со стороны, то гироскутер представляет из себя интересное устройство. Первое - это рабочая платформа или доска. Именно на нее встает человек и, пытаясь держать баланс, управляет, ездит или падает. По бокам от платформы есть два колеса, именно они и дают нам возможность ездить и двигаться вперед или назад.

Сначала разберемся с платформой. Рабочая платформа разделена на две части, на правую и левую часть. Как раз для правой и левой ноги. Сделано это для того, чтобы была возможность поворачивать вправо или влево, как раз за счет нажатия носком на эти платформы.

Как устроен гироскутер?

Мини-сигвей устройство

Колеса

По бокам идут два колеса. Обычно гироскутеры бывают 4-ех видов, и различаются они по классу и размеру колес. Первый класс гироскутеров является детский гироскутер с колесами в диаметре 4.5 дюймов. Маленький размер колес делает гироскутер очень неудобным и не проходимым в некоторых участках дороги.

Следующий класс - это гироскутер 6.5 дюймов. Он имеет уже больший диаметр колес, но все также предназначен только для езды по ровным поверхностям. Гироскутер 8 дюймов, является золотой серединой среди всех гиробордов. Он имеет оптимальный размер колес, который может проехать практически по любым дорогам.

И самый большой является внедорожник всех мини-сигвеев - гироскутер 10 дюймов . Это модель, у которой есть интересная особенность, помимо больших колес, эти колеса имеют камерную систему. То есть колеса надувные, они имеют более плавный ход, и такие гироскутеры более износостойкие чем прототипы поменьше.

Корпус

Корпус у всех гироскутеров сделан из разных материалов, но с одной и той же особенностью. Везде корпус закрывает колеса, защищая от брызг, грязи, воды, снега и пыли. Гироскутеры с маленькими колесами 4.5 и 6, обычно делают из обычного пластика. Так как эти модели предназначены для езды по ровной дороге, и развивают не такую высокую скорость, то инженеры решили не ставить дорогой пластик и не увеличивать тем самым цену на гироскутер.

У гироскутера с 8-ми дюймовыми колесами , корпуса делают из различных материалов, как из простого пластика, так и из карбона, ударопрочного магниевого пластика. Такой пластик, способен выдержать практически любое физическое воздействие и удары. Карбон к примеру еще и легкий материал, тем самым он снижает нагрузку на электродвигатели и уменьшает скорость разрядки батареи.

Двигатели

После того как вы снимите крышку, по бокам ближе к колесу вы должны увидеть электродвигатель. Электродвигатели бывают разной мощности. Среднее значение среди всех мини-сигвеев является показатель 700 Ватт на оба колеса. Или по 350 Ватт на одно колесо. Дело в том, что электродвигатели у гироскутеров работают независимо друг от друга. Одно колесо может ехать с одной скоростью, а второе с другой, или они могут двигаться в разные стороны, одно назад, другое вперед. Таким образом эта система придает гироскутеру управляемости.

Он становится более чувствительным к поворотам на большой скорости. Также вы можете разворачиваться на места на 360 градусов. Чем выше мощность у двигателя, тем выше переносимый груз и тем выше скорость, но не всегда. Надо понимать, что чем выше масса нагрузки на платформу, тем ниже скорость и быстрее разряжается батарея. Поэтому гироскутеры с мощными двигателями стоят дороже.

Система балансировки

Система балансировки состоит и включает в себя довольно много компонентов. В первую очередь, это два гироскопических датчика, которые расположены в правой и левой части платформы. Если снять крышку корпуса, то можно увидеть две вспомогательные платы, именно к ним и подсоединены гироскопические датчики. Вспомогательные платы, помогают обрабатывать информацию и отправлять ее в процессор.

Дальше в правой части можно увидеть основную плату, именно там стоит 32-ух битный процессор и осуществляется все управление и вычисление. Там же и стоит программа, которая реагирует на любое изменение платформы справа или слева.

Если платформа наклоняется вперед, то процессор, обработав информацию, посылает сигнал электродвигателям, которые физически удерживают доску в ровном положении. Но если платформа наклоняется сильнее с определенным давлением, колесо начинает сразу движение вперед или назад.

Нужно обязательно помнить, что во всех нынешних гироскутерах должны быть две вспомогательные платы для гироскопических датчиков и одна основная, где стоит процессор. В старых моделях может стоять и двухплатная система, но с осени 2015 года, в стандарт была внесено изменение и теперь все гироскутеры, мини-сигвеи делаются с 3-мя платами.

В китайских подделках или некачественных гироскутерах, может стоять одна плата, основная. К сожалению такой мини-сигвей имеет плохие характеристики в управлении. Может вибрировать или опрокидывать водителя. А в последствии вся система вообще может выйти из строя.

Схема внутреннего устройства управления гироскутером не такая сложная как кажется. Вся система сделана так, чтобы максимально быстро реагировать на любое поведение платформы. Расчет идет в доли секунды и с поразительной точностью.

Батарея

Система питания гироскутера осуществляется от двух или более аккумуляторов. В стандартных недорогих моделях обычно ставят аккумулятор с мощностью 4400 мА/ч. Аккумулятор отвечает за работу всей системы в целом и обеспечения ее электроэнергией, поэтому батарея должна быть качественная и фирменная. Обычно используют аккумуляторы двух брендов - это Samsung и LG.

Также аккумуляторы различаются по классу. Есть низкоуровневые батареи классов 1С, 2С. Такие аккумуляторы обычно ставят на гироскутеры с 4.5 и 6.5 дюймовыми колесами. Все по той же причине, потому что эти гироскутеры предназначены для ровных дорог, ровному асфальту, мрамору или полу.

Гироскутеры с 8-ми дюймовыми колесами, обычно ставят аккумуляторы среднего класса типа 3С, это уже более надежная модель батареи. Она не будет отключаться при резкой остановке или при наезде на бордюр или в яму.

У большеколесных 10-ти дюймовых моделях, обычно ставят аккумуляторы 5С класса. Этот гироскутер способен ездить практически по любым дорогам, земле, лужам, ямам. Поэтому батарея нужно более надежная.

Основной принцип устройства гироскутера обусловлен в удержании равновесии. При большом весе водителя гироскутеру нужно больше электроэнергии для осуществления маневров и движения.

Другое

Во многих гироскутерах также ставят Bluetooth систему и колонки. С помощью нее вы сможете слушать любимую музыку и кататься с друзьями. Но эта система еще дает возможность подсоединять свой смартфон к гироскутеру и следить за состоянием своего средства передвижения. Можно следить за средней скоростью, смотреть какой расстояние вы преодолели. Настроить максимальную допустимую скорость и много чего еще.

Еще на многих моделях стоит подсветка, она освещает вам путь в темноте, и так же может ярко мигать в такт с музыкой. Но нужно помнить, что музыка и подсветка сильно садят батарею. Многие вообще отключают подсветку, чтобы увеличить запас хода.

Вывод

Конструкция гироскутера сделана так, чтобы он был компактным и легким, но при этом быстрым, мощным и долговечным. Главное покупать гироскутер у проверенных поставщиков, у которых есть вся необходимая документация, чтобы не пришлось разбирать его после неудачного катания.

Если вы думаете, что гироскутер или мини-сигвей невозможно сделать дома своими руками и силами, то вы далеко заблуждаетесь. Как ни странно, в интернете есть много видео, где многие умельцы делают именно свой гироскутер. У некоторых он получается очень самодельный, но есть и те, кто смог по настоящему приблизиться к самой технологии создания и воспроизвести по настоящему интересную и качественную вещь. Так можно ли сделать гироскутер своими руками? Нам расскажет об этом Adrian Kundert - инженер и просто хороший человек.

Что такое гироскутер?

Как сделать гироскутер своими руками? Для того, чтобы понять как сделать самодельный гироскутер, нужно для начала понять - что такое гироскутер , из чего он состоит и что нужно для создания этого интересного средства передвижения. Гироскутер - это самосбалансированное средство передвижения, принцип работы которого стоит на системе гироскопических датчиков и внутренней технологии удержания баланса рабочей платформы. То есть когда мы включаем гироскутер, включается и система балансировки. Когда человек встает на гироскутер, начинается меняться положение платформы, эта информация считывается как раз гироскопическими датчиками.

Эти датчики считывают любое изменение положения относительно земной поверхности или точки от которой идет гравитационное воздействие. После считывания, информация подается на вспомогательные платы, которые находятся по обе стороны платформы. Так как датчики и сами электродвигатели работают независимо друг от друга, то в дальнейшем нам понадобятся два электродвигателя. От вспомогательных плат, информация в обработанном виде уже идет в материнскую плату с микропроцессором. Там уже с необходимой точностью выполняется программа удержания баланса.

То есть если платформа наклоняется вперед, примерно на несколько градусов, то двигателям подается сигнал на движение в обратное направление и платформа выравнивается. Также выполняется и наклон в другую сторону. Если же гироскутер наклоняется на больший градус, то программа сразу же понимает, что идет команда о движении вперед или назад электродвигателям. Если гироскутер наклоняется больше чем на 45 градусов, то двигатели и сам гироскутер отключается.

Гироскутер состоит, из корпуса, стальной или металлической основы, на который и будет крепится вся электроника. Дальше идет два электродвигателя с той мощностью, чтобы была возможность ездить под весом человека до 80-90кг. Дальше идет материнская плата с процессором и две вспомогательные платы, на которых как раз и стоят гироскопические датчики. И конечно же аккумулятор и два колеса с одинаковым диаметром. Как сделать гироскутер? Для решения этого вопроса, нам понадобится добыть определенные детали конструкции самого гироборда.

Что же нам понадобится?

Как сделать гироскутер своими руками? Первое и основное что понадобится, это два электрических двигателя, с мощностью способных перевозить вес взрослого человека. Средняя мощность у заводских моделей составляет 350 Ватт, поэтому постараемся найти двигатели такой мощности.

Дальше конечно же нужно найти два одинаковых колеса, примерно 10-12 дюймов. Лучше побольше, так как электроники у нас будет много. Чтобы проходимость была выше и расстояние между платформой и землей было на нужном уровне.

Два аккумулятора, свинцово-кислотных, нужно выбрать номинальную мощность как минимум 4400 мА/ч, а лучше больше. Так как мы будем делать не металлическую конструкцию, но она будет весить больше чем оригинальный мини-сигвей или гироскутер.

Производство и процесс

Как сделать гироскутер, мощный и чтобы он сам держал баланс при езде? Сначала нужно построить план, какое именно средство передвижения нам понадобится. Нам нужно сделать довольно мощное средство передвижения с большими колесами и большой проходимостью по разным дорогам. Минимальное значение беспрерывной езды должно составлять 1-1.5 часа. Мы потратим примерно около 500 евро. Поставим беспроводную систему управления нашему гироскутеру. Поставим считывающее устройство неполадок и ошибок, вся информация будет идти на SD-карту.

Схема гироскутера

На схеме выше можно все четко увидеть: электродвигатели, аккумуляторы и прочее. Для начала нужно выбрать именно тот микроконтроллер, который и будет осуществлять управление. Из всех представленных на рынке микроконтроллеров Arduino мы с вами выберем UnoNano, и в качестве дополнительного чипа обработки информации будет выступать ATmega 328.

Но как сделать гироскутер безопасным? Два аккумулятора у нас будут подсоединены последовательно, так мы получим нужное напряжение. Для электродвигателей, как раз и понадобится сдвоенная мостовая схема. Будет поставлена кнопка готовности, по нажатию которой и будет поступать питание на двигатели. При отжимании этой кнопки, двигатели и сам гироскутер будет отключаться. Нужно это для осуществления безопасной езда самого водителя и нашего средства передвижения.

Микроконтроллер Arduino будет на скорости около 38400 БОД, использовать последовательную связь со схемой XBee. Мы будем использовать два гироскопических датчика InvenSense MPU 6050 на базе модулей GY-521. Они в свою очередь будут считывать информацию о положении платформы. Эти датчики достаточно точны для того, чтобы сделать мини-сигвей. Эти датчики будут расположены на двух дополнительных вспомогательных платах, которые будут осуществлять первичную обработку.

Мы будем использовать шину I2C, она имеет достаточную пропускную способность, чтобы быстро связывать с микроконтроллером Arduino. Гироскопический датчик имеющий адрес 0x68 имеет частоту обновления информации раз в 15 мс. Второй же датчик адресов 0x68 работает напрямую от микроконтроллера. У нас так же есть выключатель нагрузки, он переводит гироскутер в режим удержания баланса, тогда когда платформа находится в ровном положении. В этом режиме гироскутер остается на месте.

Три деревянные детали, на которых и будет располагаться наши колеса и электродвигатели. Рулевой столб, сделан из обычной деревянной палки он будет крепиться к передней части самого гироскутера. Тут можно взять любую палку, даже черенок от швабры. Нужно обязательно учесть тот факт, что аккумуляторы и другие схемы, будут производить давление на платформу и тем самым балансировка будет немного перенастроена, именно в ту часть, где будет больше давление.

Двигатели же нужно равномерно распределить справа и слева по бокам платформы, а аккумулятор максимально посередине в специальной коробке. Крепим рулевой столб на обычные финты и присоединяем кнопку готовности к верхней части палки. То есть если что-то пошло не так и кнопка отжата, то гироскутер будет выключаться. В дальнейшем эту кнопку можно переделать в подножную часть или настроить на определенный наклон самой платформы, но мы пока делать этого не будем.

Внутренняя схема и спайка всех проводов, производится по той же схеме. Дальше нужно подключить два гироскопических датчика к нашему микроконтроллеру, по мостовой схеме с двигателем, по данной таблице.

Датчики балансировки должны быть установлены параллельно земле или вдоль самой платформы, а вот датчики поворота направо и налево должны быть установлены перпендикулярно гироскопическим датчикам.

Настройка датчиков

Дальше производим настройку микроконтроллера, загружаем исходный код . Дальше нужно проверить правильную взаимосвязь между гироскопическими датчиками и датчиками поворотов. Используйте программу Arduino Terminal по программированию и настройке гироскутера. Обязательно нужно настроить ПИД регулятор баланса. Дело в том, что вы можете выбрать двигатели с другой мощностью и характеристиками, для них настройка будет другой.

Есть несколько параметров в этой программе. Первый самый главный параметр, это параметр Kp, он отвечает за балансировку. Сначала увеличьте этот показатель, для того чтобы ввести гироскутер в нестабильный вид, а потом уменьшайте показатель до нужного параметра.

Следующий параметр, это параметр Ki он отвечает за ускорение гироскутера. При снижении угла наклона скорость уменьшает или увеличивается при обратном действии. и последний параметр, это параметр Kd, он возвращает саму платформу в ровное положение, а двигатели приводит в режим удержания. В этом режиме гироскутер просто стоит на месте.

Дальше вы включаете кнопку включения микроконтроллера Arduino и гироскутер переходит в режим ожидания. После того как вы встали на сам гироборд, вы встаете ногами на нажимную кнопку, так гироскутер переходит в режим "на месте". Включаются датчики балансировки и при изменении угла наклона, гироскутер едет вперед или назад. При каких либо поломках, можно без проблем осуществить ремонт гироскутера своими руками.

Что нам понадобится? Для начала – колеса, возьмем от тренажера для пресса. Редуктор на 12 вольт и на 160 оборотов в минуту. Powerbank на 15000 миллиампер часов. Чтобы можно было управлять транспортным средством, то есть поворачивать направо или налево, ускоряться и замедляться, будем использовать модули, которые уже использовали при изготовления самодельной газонокосилки. Так можно будет регулировать обороты двигателя. Соответственно, 2 модуля, 2 двигателя, 2 повербанка.

Два комплекта работают по отдельности. Положим, добавляем оборотов правому двигателю, сигвей будет поворачивать налево. Тоже самое, но зеркально, при повороте направо. Если добавить оборотов одновременно двум моторам, средство будет ускоряться.

Сначала установим редукторы. Для этого прикладываем по центру на фанерном листе, обводим контур и фрезой делаем углубление. Точно так же, как был прикреплен редуктор с левой стороны, делаем с противоположной.

Нужно вырезать несколько таких брусков и прикрутить по бокам. Это нужно, чтобы фанера не провисала.
Снимаем колеса и ставим на ось. Как вы может видеть, они отличаются друг от друга. Нужно изготовить предварительно две деревянные втулки. Будем использовать самодельный токарный станок по дереву. Получились две деревянные заготовки.

Вставляем заготовку. Сверлим отверстие и приклеиваем заготовку эпоксидной смолой. (Автор в конце ролика сделал поправку, читайте ниже).

Теперь будем изготавливать руль. Для этого будем использовать кусок канализационной трубы. От тренажера мы взяли рукоять. В верхней части фанеры проделаем отверстия, закрепим трубу и рукоять. У сегвея руль должен быть слегка под уклоном, поэтому проделали в фанере отверстие под уклоном и подрезали пластиковую трубу.

Все модули управления будут установлены на руле. Нужно протянуть 8 кусков проводов от руля к редукторам. Чтобы сверху они не торчали, предварительно делаем сквозное отверстие в трубе и просовываем провода.

И теперь снова нужно все проклеить эпоксидной смолой и подождать 24 часа. Колеса как оказалось, деформировались, эпоксидка оказалась не очень надежным материалом. Разобрал редукторы, снял валы и на них нарезал резьбу. Также просверлил отверстия в деревянных втулках. Вставил металлические втулки и теперь это все выглядит намного надежнее. Колеса также можно будет вкручивать очень крепко. Пластиковая труба показалась не совсем надежной, внутрь нее вставлен для укрепления черенок от лопаты.

Ставим 2 модуля в панель. Нужно просверлить дырки в трубе под резисторы. Остается приклеить кнопки с помощью термоклея. Провести провода к модулю, редукторам, Power банкам. Прикрутить колеса.

Для тех, кто опасается неправильно подключить провода, на модулях все детально расписано.

Сигвей будет также иметь спидометр для велосипеда. Тестовый вариант самодельного сигвея готов. Давайте его протестируем.

Сейчас всё более популярным делается небольшая самодвижущаяся платформа с двумя колёсами, так называемый Сигвей, который изобрёл Дин Камен. Замечая трудности, с которыми сталкивается человек в коляске при восхождении на тротуар, он увидел возможность создать транспортное средство, которое может помочь людям передвигаться без особых усилий. Камен применил на практике свою идею о создании самобалансирующейся платформы. Первая модель была испытана в 2001 году и это было средство передвижения с кнопками на ручке. Она была разработана для людей с ограниченными возможностями и позволяла им самостоятельно передвигаться даже по пересеченной местности. Новая модель стала известна как “Сигвей РТ”, и уже позволяла рулить, наклоняя влево или вправо рычаг. В 2004 году она начала продаваться в Европе и Азии. Цена самых продвинутых современных моделей, например Segway PTi2 - около 5000 долларов. В последнее время китайские и японские компании создают устройства с различными модификациями и новаторской конструкцией. Некоторые даже делают подобные транспортные средства только с одним колесом, но давайте рассмотрим классический Сигвей.


Segway состоит из платформы и двух колес, размещенных поперечно с приводом от двух электромоторов. Сама система стабилизируется сложной электронной схемой, которая управляет двигателями, принимая во внимание не только наклоны водителя, но и состояние транспортного средства, что позволяет ему всегда оставаться в вертикальном стабильном положении. Водитель, стоя на платформе, контролирует скорость просто перемещая ручку вперед или назад, при наклоне вправо или влево - поворот. Плата управления отслеживает сигналы соответствующих датчиков движения и ориентирования (похожие на те, которые позволяют смартфонам менять ориентацию экрана), чтобы помочь бортовому микропроцессору точно ориентировать платформу. Главный секрет segway не столько в электро-механической части, сколько в коде, который учитывает физику движения со значительной математической точностью обработки данных и предсказания поведения.

Сигвей оснащен двумя бесщеточными электромоторами, сделанных с применением сплава неодим-железо-бора, способными развивать мощность до 2 кВт, благодаря литий-полимерному аккумулятору.

Детали для Сигвея

Для создания Сигвея нужно два мотора-редуктора с колесами, аккумулятор, электронная схема, платформа и руль.

Мощность двигателя недорогих моделей примерно 250W, что обеспечивает скорость до 15 км/ч, с относительно низким потреблением тока. Напрямую крутить колеса не могут, потому что высокое число оборотов этих моторов не позволяют получить нужную тягу. Аналогично тому, что происходит, когда вы используете передач вашего велосипеда: за счет увеличения передаточного отношения потеряется скорость, но увеличится усилие, прикладываемое к педали.

Платформа расположена ниже оси моторов. Батарея, вес которой достаточно высок, также находятся под подножкой в симметричном положении, что гарантирует даже без водителя на борту Сигвей остается в вертикальном положении. Кроме того, внутренняя механическая стабильность поможет узлу электронной стабилизации, которая полностью активна, когда водитель присутствует. Присутствие человека на платформе поднимает центр тяжести выше оси колеса, что делает систему нестабильной - это уже будет компенсировать плате электроники.

В принципе, такую вещь можно сделать и самому, купив нужный блок электроники на китайском сайте (они есть в продаже). Монтаж всех частей осуществляется винтами и гайками (не шурупы). Особое внимание должно быть уделено надлежащему натяжению цепи. Крепление батарей осуществляется через U-образные хомуты с небольшими резиновыми прокладками, чтобы обеспечить нужное давление. Рекомендуется добавлять двухсторонний скотч между батареей и платформой, так чтоб не было проскальзывания. Контрольная панель должна быть вставлена между двумя батареями и крепится специальными распорками.

Рычаг управления может быть, а может и нет - ведь сейчас популярны модели сигвеев и без него (минисигвей). В общем вещь интересная и не очень дорогая, так как по информации от знакомых - закупочная оптовая цена в Китае всего 100 долларов.

Просмотров