Рыба которая бьет током как называется. Как устроены электрические рыбы? Кто вырабатывает электричество

Из всех позвоночных только рыбы в состоянии произвести доста­точное количество электрической энергии, чтобы парализовать или даже убить человека. Электрические органы служат рыбам для обороны, ориентации, охоты и, возможно, коммуникации. Электрическую энергию способны вырабатывать около двухсот пятидесяти видов рыб; однако заряд такой силы, что он может служить оружием против человека, накапливают лишь электрические угри (Electrophorus electricus ), обитающие в Южной Америке и электрические скаты, принадлежащие к семейству Тоrpedinidae .

Каким образом животные генерируют такие мощные импульсы электрической энергии, остается для учёных загадкой, однако природа животного электричества вполне понятна. Электрическая энергия возникает в теле любого животного - в том числе человека. Электрические импульсы бегут по нервным волокнам и подают клеткам мозга, а также другим клеткам сигналы о различных явлениях. Даже чтение этих страниц, читатель, приводит к возникновению электрических сигналов; но у электрических угрей и некоторых скатов энергии накапливается так много, что она используется в качестве оружия против других рыб и животных. Рассмотрим, как она образуется.

О том, что ткани животных генерируют электричество, человечество узнало в 1791 году, когда Луиджи Гальвани, профессор анатомии в Болонском университете, обнаружил, что нервная и мышечная ткани ноги лягушки реагируют на электрический ток. Со временем ученые выяснили, что импульсы, рассылающие сигналы по нервной системе человека, имеют электрохимическую природу. Упрощая картину, можно сказать, что нервные сигналы - это движение ионов, то есть заряженных частиц сквозь оболочки нервных клеток. В состоянии покоя или бездействия клетки ее оболочка имеет отрицательный потенциал, так как изнутри клетки скапливаются отрицательно заряженные ионы; однако снаружи клетки находятся и положительные, и отрицательные ионы, и среди них - ионы натрия, несущие положительный заряд. Когда нервная клетка посылает сигнал, оболочка её меняет полярность, и ионы натрия проникают сквозь нее в клетку, меняя ее потенциал на положительный. Придя в обычное состояние, клетка избавляется от ионов натрия при помощи механизма, "устройство" которого неизвестно; ученые называют его "натриевым насосом", потому что он словно выкачивает из клетки ионы натрия.

Когда клетка передает сигнал, "насос" перестает действовать. Ионы натрия и калия притягиваются друг к другу, обмениваясь зарядами и нейтрализуя электрический потенциал клетки. Крошечные разряды поднимаются по нервному волокну, отходящему от клетки, возбуждая электрическое поле в окружающей ткани и жидкости. Сигнал, или нервный импульс, перемещается по нервному волокну до тех пор, пока не достигнет точки, где оно разветвляется на отростки, называемые нервными окончаниями. Окончания пронизывают пространство, отделяющее одну нервную клетку от другой. Это пространство между двумя соседними клетками нервной ткани называется синапсом.

B какой-то момент нервный импульс, направляющийся к мышце, достигает синапса, на противоположной стороне которого на­ходится клетка мышечного волокна. Эта точка, называемая нервно-мышечным соединением играет решающую роль в генериро­вании электричества у рыб. При появлении нервного импульса в нервно-мышечном соединении вокруг нервных окончаний выде­ляется химическое вещество, называемое ацетилхолином. Проса­чиваясь от нервной клетки к мышечной, ацетилхолин передает импульс мышечному волокну, деполяризуя его и вызывая тем самым электрический разряд. Предполагается также, что еще одной функцией ацетилхолина является прекращение действия "натриевого насоса" в клетке, что позволяет ионам проникать сквозь оболочку клетки.

Обычно электрический сигнал заставляет мышцу сокращать­ся, что и проявляется в различных движениях тела животного. Однако некоторые мышцы у рыб потеряли способность сокра­щаться. Нервные окончания, идущие к этим мышцам, залегают в районе нервно-мышечных соединений очень густо, а волокна мышечных клеток настолько разрастаются, что образуют нечто вроде живого электрода.

Электрические органы таких рыб, как электрический угорь и электрические скаты, состоят из нескольких подобных "электро­дов". Когда все они разряжаются, возникает электрический ток большой мощности. Управляет разрядом пучок нервов, который у электрического угря отходит от спинного мозга, а у электрического ската - от головного.

Электрические скаты, обитающие и в умеренной, и в тропиче­ской зонах, способны создать на своих "электродах" напряжение до 50 вольт и выше; этого достаточно, чтобы убивать рыб и ракообразных, которыми питаются скаты. Электрический скат похож на гибкий блин с длинным и толстым хвостом. Охотясь, скат бросается на жертву всем телом и "обнимает" ее своими "крыльями", на концах которых находятся электрические орга­ны. Объятие смыкается, "электроды" разряжаются - и скат убивает свою жертву разрядом тока.

Самый крупный из электрических скатов - это Torpedo nоbiliana , обитатель вод Северной Атлантики; в длину он достига­ет 1,8 метра, весит около 100 килограммов и способен создавать разность потенциалов в 200 вольт - этого достаточно, чтобы убить любое животное, оказавшееся в воде поблизости. Особая действенность электрического разряда в воде объясняется тем, что вода - хороший проводник электрического тока.

Электрический скат упоминается во многих легендах, дошед­ших до нас из глубины веков; толкователи снов считали, что он предвещает близкое несчастье. Греки и римляне знали, что скат владеет источником какой-то странной энергии, и, поскольку электричество тогда не было известно, полагали, что источник ее - какое-то неведомое вещество. Существовало и еще одно поверье - будто скат, пойманный на бронзовый крючок, убивает забросившего снасть рыбака, причем смерть наступает от свертывания крови.

В старину скатов использовали для лечения посредством шока. Лекари помещали небольших скатов на головы пациентов, стра­дающих головными болями и другими недугами; считалось, что скат обладает целебными свойствами.

Электрический угорь, генерирующий разряд тока напряжени­ем 650 вольт - а это в несколько раз больше того напряжения, которое способен создать даже самый крупный из скатов, - впол­не может убить находящегося поблизости в воде человека. Элект­рический угорь имеет мало общего с прочими угрями; он состоит в родстве с рыбой-ножом и обитает в реках. Электрический угорь достигает в длину 2,7 метра, а в толщину - около 10 сантимет­ров. Четыре пятых его тела занимают три электрических органа, и лишь одна пятая его длины приходится на другие органы, вы­полняющие такие важные жизненные функции, как дыхание, пи­щеварение, размножение и прочие.

Воды, в которых живет электрический угорь, бывают бедны кислородом, но угря это не смущает: он научился дышать также и атмосферным кислородом. Многочисленные кровеносные сосу­ды в его пасти способны усваивать кислород, и угорь захваты­вает воздух, поднимаясь к поверхности воды.

Молодой электрический угорь видит хорошо, но с возрастом его зрение резко ухудшается. Это не особенно смущает угря, ибо в темной, мутной воде, где он обычно обитает, от глаз все равно толку мало. Искать добычу угрю помогают все те же электриче­ские органы: он испускает сравнительно слабые электрические импульсы, напряжение которых не превышает 40 - 50 вольт; эти низковольтные разряды помогают ему находить мелких морских обитателей, которыми угорь питается. Кроме того, электрические угри, вероятно, способны воспринимать электрические разряды друг друга - во всяком случае, когда один из них ударом элект­рического тока парализует жертву, к добыче устремляются и другие угри.

Электрические угри хорошо привыкают к жизни в неволе, и их часто можно видеть в аквариумах; обычно аквариум оборуду­ют каким-нибудь электрическим прибором для демонстрации уникальных способностей угря, например лампой, к которой ве­дут провода от двух опущенных в воду электродов. Когда в аква­риум бросают кусочки корма или мелких рыбешек, лампа заго­рается, потому что, почуяв добычу, угорь начинает генерировать в воде электрические разряды. Аквариум можно оборудовать и звукоусилителями, и тогда посетители услышат статические шумы, сопровождающие разряды тока, генерируемые угрем.

Обращение с электрическим угрем - дело довольно опасное. В Лондонском зоопарке угорь однажды сильно ударил электрическим током служителя, который его кормил. Другой угорь на­чал генерировать электрические разряды, когда его переносили в металлической коробке, и служителю пришлось бросить короб­ку на землю. Но только при непосредственном контакте удар угря оказывается смертельным; однако пловец, оказавшийся в воде недалеко от места разряда, может утонуть, находясь в состоянии шока.

Способность угря генерировать огромные количества электро­энергии уже более столетия привлекает внимание биологов и ме­диков. Во время второй мировой войны ею заинтересовались и военные, в том числе и американские: через два года после вступления Соединенных Штатов в войну, в Нью-Йорк были доставлены двести электрических угрей, пойманных в Южной Америке. В зоопарке в Бронксе для них устроили двадцать два деревянных бассейна. Угрей использовали в экспериментах по изучению действия нервно-паралитических газов, которые блоки­руют передачу нервных импульсов, и таким образом могут приостанавливать работу сердца, легких и других жизненно важных органов. Сущность действия газов состоит в том, что они препят­ствуют расщеплению ацетилхолина после того, как он останав­ливает "натриевый насос" нервной клетки. Обычно в организме ацетилхолин расщепляется сразу же после того, как выполнит свою функцию; процесс расщепления управляется ферментом, который называется холинэстераза. Нервно-паралитические газы как раз и препятствуют действию этого фермента.

Электрические органы угря содержат большое количество холинэстеразы, которая отличается к тому же высокой актив­ностью; потому-то военным специалистам и понадобились электрические угри, привезенные в зоопарк в Бронксе: они служили источником фермента, нужного для изучения нервно-паралити­ческого действия отравляющих газов. Большинство работников зоопарка лишь после войны узнали, зачем в подвалах львиного вольера держали такое количество электрических угрей.

Рыбы составляют меньшую часть обитателей Мирового океа­на; гораздо большую часть его обитателей составляют беспозво­ночные, и именно среди них имеются и самые миниатюрные и безобидные водные животные, и самые громадные и опасные.

В приключенческих фильмах и романах, действие которых происходит в морях южного полушария, часто появляется гигантский моллюск Tridacna gigas , изображаемый этакой живой ловушкой, капканом, поджидающим неосторожного пловца. На самом деле этот гигант питается планктоном и вовсе не обладает той огромной силой, которую ему обычно приписывают, - даже если размеры его раковины действительно достигают 1,2 метра, а вес самого моллюска 220 килограммов. Нет ни одного документированного случая смерти человека от столкновения с Tridacna gigas , однако даже такие авторитетные источники, как издава­емый американским военно-морским флотом журнал "Наука о море", предупреждают читателя об опасности, которую пред­ставляет для аквалангиста этот моллюск. Однако маловероятно, что моллюск, случайно сомкнувший свои створки вокруг человеческой ноги, станет удерживать ее; скорее, он постарается отде­латься от неудобной добычи.

Разность потенциалов на концах электрических органов может достигать 1200 вольт, а мощность разряда в импульсе — от 1 до 6 киловатт. Частота импульсов зависит от их назначения. Например, электрический скат испускает 10—12 импульсов, когда защищается, и от 14 до 562, когда нападает. Мощность напряжения в разряде у разных рыб колеблется от 20 до 600 вольт. Среди морских рыб самый «сильный» электрический орган у ската Torpedo maromata — он может генерировать разряд более 200 вольт. Электричество защищает его и от акул, и от осьминогов, а также позволяет охотиться на мелких рыб.

У пресноводных рыб разряды еще мощнее. Дело в том, что соленая вода лучше проводит электричество, чем пресная. Поэтому морским рыбам, чтобы оглушить противника, требуется меньше энергии. Одна из самых опасных пресноводных рыб — это электрический угорь из Амазонки. На его теле три электрических органа. Два из них для навигации и поиска добычи, а третий представляет собой мощнейшее оружие с напряжением более 500 вольт. Электрический удар такой силы не только убивает рыбу и лягушек, но даже может нанести серьезный вред человеку. Поэтому ловить амазонских угрей очень опасно. Для этого в реку загоняют стадо коров, чтобы угри истратили на них весь свой заряд. Только после этого люди заходят в воду.

Некоторые рыбы используют электричество для навигации. Например, нильский слоник или рыба-нож создают вокруг себя электромагнитное поле. Когда в него попадает посторонний объект, рыба сразу это чувствует. Такая навигационная система напоминает эхолокацию летучих мышей. Она позволяет хорошо ориентироваться в мутной воде. Как показали исследования, многие электрические рыбы настолько чувствительны к изменению электромагнитных полей, что способны «предвидеть» приближающееся землетрясение.

Говоря о возможности использования рыбами магнитного поля Земли для целей навигации, естественно поставить вопрос, а могут ли они вообще воспринимать это поле.

На магнитное поле Земли в принципе могут реагировать как специализированные, так и неспециализированные системы. В настоящее время не доказано, что у рыб имеются чувствительные к этому полю специализированные рецепторы.

Как воспринимают магнитное поле Земли неспециализированные системы? Более 40 лет назад было высказано предположение, что основой таких механизмов могут быть токи индукции, возникающие в теле рыб при их движении в магнитном поле Земли. Одни исследователи считали, что рыбы во время миграций используют электрические индукционные токи, возникающие в результате движения (течения) воды в магнитном поле Земли. Другие полагали, что некоторые глубоководные рыбы используют индукционные токи, возникающие в их теле при движении.

Рассчитано, что при скорости движения рыбы 1 см в секунду на 1 см длины тела устанавливается разность потенциалов около 0,2-0,5 мкВ. Многие электрические рыбы, обладающие специальными электрорецепторами, воспринимают напряженность электрических полей еще меньшей величины (0,1-0,01 мкВ на 1 см). Таким образом, в принципе они могут ориентироваться на магнитное поле Земли при активном перемещении или пассивном сносе (дрейфе) в потоках воды.

Анализируя график пороговой чувствительности гимнарха, советский ученый А. Р. Сакаян сделал вывод, что эта рыба чувствует количество протекающего в ее теле электричества, и высказал предположение о способности слабоэлектрических рыб определять направление своего пути по магнитному полю Земли.

Сакаян рассматривает рыбу как замкнутый электрический контур. При движении рыбы в магнитном поле Земли по ее телу в результате индукции в вертикальном направлении проходит электрический ток. Количество электричества в теле рыбы при ее перемещении зависит только от взаимного расположения в пространстве направления пути и линии горизонтальной составляющей магнитного поля Земли. Следовательно, если рыба реагирует на количество электричества, протекающего через ее тело, она может определить свой путь и его направление в магнитном поле Земли.

Таким образом, хотя вопрос об электронавигационном механизме слабоэлектрических рыб еще окончательно не выяснен, принципиальная возможность использования ими токов индукции не вызывает сомнений.

Электрические рыбы в значительном большинстве - «оседлые», немигрантные формы. У мигрантных неэлектрических видов рыб (тресковые, сельдевые и др.) электрических рецепторов и высокой чувствительности к электрическим полям не обнаружено: обычно она не превышает 10 мВ на 1 см, что в 20 000 раз ниже напряженности электрических полей, обусловленных индукцией. Исключением являются неэлектрические рыбы (акулы, скаты и др.), имеющие особые электрорецепторы. При движении со скоростью 1 м/с они могут воспринимать индуцированное электрическое поле напряженностью 0,2 мкВ на 1 см. Электрические рыбы чувствительнее неэлектрических к электрическим полям примерно в 10 000 раз. Это говорит о том, что неэлектрические виды рыб не могут ориентироваться на магнитное поле Земли, используя токи индукции. Остановимся на возможности использования рыбами биоэлектрических полей при миграциях.

Практически все типично мигрирующие рыбы - стайные виды (сельдевые, тресковые и др.). Исключение составляет только угорь, но, переходя в мигрантное состояние, он претерпевает сложный метаморфоз, что, возможно, сказывается на генерируемых электрических полях.

В период миграции рыбы образуют плотные организованные стаи, движущиеся в определенном направлении. Небольшие косячки этих же рыб не могут определить направление миграции.

Почему же рыбы мигрируют в стаях? Некоторые исследователи объясняют это тем, что по законам гидродинамики движение рыб в стаях определенной конфигурации облегчается. Однако существует и другая сторона этого явления. Как уже говорилось, в возбужденных стайках рыб биоэлектрические поля отдельных особей суммируются. В зависимости от количества рыб, степени их возбуждения и синхронности излучения общее электрическое поле может значительно превышать объемные размеры самой стаи. В подобных случаях напряжение, приходящееся на одну рыбу, может достигать такой величины, что она способна воспринимать электрическое поле стаи даже при отсутствии электрорецепторов. Следовательно, рыбы могут использовать электрическое поле стаи в целях навигации благодаря его взаимодействию с магнитным полем Земли.

А как ориентируются в океане нестайные рыбы-мигранты - угри и тихоокеанские лососи, совершающие длительные миграции? Европейский угорь, например, становясь половозрелым, направляется из рек в Балтийское море, затем в Северное море, попадает в Гольфстрим, движется в нем против течения, пересекает Атлантический океан и приходит в Саргассово море, где он размножается на большой глубине. Следовательно, угорь не может ориентироваться ни по Солнцу, ни по звездам (по ним ориентируются во время миграций птицы). Естественно возникает предположение, что, так как большую часть своего пути угорь проходит, находясь в Гольфстриме, он использует для ориентации течение.

Попробуем представить, как ориентируется угорь, находясь внутри многокилометровой толщи движущейся воды (химическая ориентация в этом случае исключается) . В толще воды, все струйки которой перемещаются параллельно (подобные потоки называются ламинарными), угорь движется в одном направлении с водой. В этих условиях его боковая линия - орган, позволяющий воспринимать локальные потоки воды и поля давления,- работать не может. Точно так же, плывя по реке, человек не ощущает ее течения, если не смотрит на берег.

Может быть, морское течение не играет никакой роли в механизме ориентации угря и его миграционные пути случайно совпадают с Гольфстримом? Если так, то какие же сигналы окружающей среды использует угорь, чем он руководствуется при ориентации?

Остается предположить, что угорь и тихоокеанский лосось используют в своем ориентационном механизме магнитное поле Земли. Однако специализированных систем для его восприятия у рыб не обнаружено. Но о ходе опытов по выяснению чувствительности рыб к магнитным полям оказалось, что и угри, и тихоокеанские лососи обладают исключительно высокой чувствительностью к электрическим токам в воде, направленным перпендикулярно оси их тела. Так, чувствительность тихоокеанских лососей к плотности тока составляет 0,15*10 -2 мкА на 1 см 2 , а угря - 0,167*10 -2 на 1 см 2 .

Была высказана мысль об использовании угрем и тихоокеанскими лососями геоэлектрических токов, создаваемых в воде океана течениями. Вода - проводник, движущийся в магнитном поле Земли. Возникающая в результате индукции электродвижущая сила прямо пропорциональна напряженности магнитного поля Земли в данной точке океана и определенной скорости течения.

Группа американских ученых на трассе движения угря провела инструментальные замеры и расчеты величин возникающих геоэлектрических токов. Выяснилось, что плотности геоэлектрических токов составляют 0,0175 мкА на 1 см 2 , т. е. почти в 10 раз выше чувствительности к ним рыб-мигрантов. Последующие опыты подтвердили, что угри и тихоокеанские лососи избирательно относятся к токам с подобной плотностью. Стало очевидно, что угорь и тихоокеанские лососи могут использовать для своей ориентации при миграциях в океане магнитное поло Земли и морские течения благодаря восприятию геоэлектрических токов.

Советский ученый А. Т. Миронов предположил, что при ориентации рыбы используют теллурические токи, впервые обнаруженные им в 1934 г. Механизм возникновения этих токов Миронов объясняет геофизическими процессами. Академик В. В. Шулейкин связывает их с электромагнитными полями в космосе.

В настоящее время работами сотрудников Института земного магнетизма и распространения радиоволн в ионосфере АН СССР установлено, что постоянная составляющая полей, образуемых теллурическими токами, не превышает напряженности 1 мкВ на 1 м.

Советский ученый И. И. Рокитянский предположил, что, поскольку теллурические поля являются индукционными полями с разными амплитудами, периодами и направлениями векторов, рыбы стремятся уходить в места, где величина теллурических токов меньше. Если это предположение правильно, то в период магнитных бурь, когда напряженность теллурических полей достигает десятков - сотен микровольт на метр, рыбы должны уходить от берегов и с мелких мест, а следовательно, и с промысловых банок в глубоководные районы, где величина теллурических полей меньше. Изучение взаимосвязи поведения рыб с магнитной активностью позволит подойти к разработке способов прогнозирования их промысловых скоплений в определенных районах. Сотрудники Института земного магнетизма и распространения радиоволн в ионосфере и Института эволюционной морфологии и экологии животных АН СССР провели работу, в которой при сопоставлении уловов норвежской сельди с магнитными бурями была выявлена определенная корреляция. Однако все это требует экспериментальной проверки.

Как уже говорилось выше, у рыб существуют шесть систем сигнализации. А не пользуются ли они еще каким-нибудь чувством, пока не известным?

В США в газете «Новости электроники» за 1965 и 1966 гг. было опубликовано сообщение об открытии У. Минто особых «гидронических» сигналов новой природы, используемых рыбами для связи и локации; причем у некоторых рыб они регистрировались на большом расстоянии (у макрели до 914 м). Подчеркивалось, что «гидроническое» излучение нельзя объяснить электрическими полями, радиоволнами, звуковыми сигналами или другими ранее известными явлениями: гидронические волны распространяются только в воде, их частота колеблется от долей герца до десятков мегагерц.

Сообщалось, что сигналы были открыты при исследовании звуков, издаваемых рыбами. Среди них выделены частотно-модулированные, используемые для локации, и амплитудно-модулированные, излучаемые большинством рыб и предназначенные для связи. Первые напоминают короткий свист, или «чириканье», а вторые - «щебетанье».

У. Минто и Дж. Хадсон сообщили, что гидроническое излучение свойственно практически всем видам, но особенно сильно эта способность развита у хищников, рыб со слаборазвитыми глазами и у охотящихся ночью. Ориентационные сигналы (сигналы локации) рыбы испускают в новой обстановке или при исследовании незнакомых объектов. Сигналы связи наблюдаются в группе особей после возвращения рыбы, побывавшей в незнакомой обстановке.

Что же побудило Минто и Хадсона считать «гидронические» сигналы проявлением не известного ранее физического явления? По их мнению, эти сигналы не акустические, потому что их можно воспринимать непосредственно на электроды. В то же время «гидронические» сигналы нельзя отнести и к электромагнитным колебаниям, по мнению Минто и Хадсона, так как в отличие от обычных электрических они состоят из импульсов, не имеющих постоянного характера и длящихся несколько миллисекунд.

Однако с такими взглядами трудно согласиться. У электрических и неэлектрических рыб сигналы очень разнообразны по форме, амплитуде, частоте и длительности, в связи с чем такие же свойства «гидронических» сигналов не говорят об их особой природе.

Последняя «необычная» особенность «гидронических» сигналов - их распространение на расстояние 1000 м - также может быть объяснена на основании известных положений физики. Минто и Хадсон не проводили лабораторных экспериментов на одной особи (данные таких опытов свидетельствуют, что сигналы отдельных неэлектрических рыб распространяются на небольшие расстояния). Они регистрировали сигналы от косяков и стай рыб в морских условиях. Но, как уже говорилось, в подобных условиях может суммироваться напряженность биоэлектрических полей рыб, и единое электрическое пола стаи удается уловить на значительном расстоянии.

На основании изложенного выше можно сделать вывод, что в работах Минто и Хадсона необходимо различать две стороны: фактическую, из которой следует, что неэлектрические виды рыб способны генерировать электрические сигналы, и «теоретическую» - бездоказательное утверждение, что эти разряды имеют особую, так называемую гидроническую природу.

В 1968 г. советский ученый Г. А. Остроумов, не вдаваясь в биологические механизмы генерации и приема электромагнитных сигналов морскими животными, а исходя из фундаментальных положений физики, произвел теоретические расчеты, которые привели его к заключению, что Минто и его последователи ошибаются, приписывая особую физическую природу «гидроническим» сигналам. В сущности, это обычные электромагнитные процессы.

<<< Назад
Вперед >>>

В глубинах морей и океанов обитает большое количество удивительных существ, среди которых скат и угорь. Эти создания прославились тем, что для защиты и охоты используют электричество. Однако большинство людей и представить не могут, каким образом живой организм способен выполнять роль мощной батареи.

Кто вырабатывает электричество?

Сразу в качестве интересного факта стоит отметить, что электричество вырабатывают все рыбы, просто 99% видов генерируют очень слабые заряды, не ощутимые при взаимодействии. Морские существа способны вырабатывать электричество благодаря особому устройству мышц, которые вырабатывают и накапливают электричество.

Некоторые виды в процессе эволюции научились аккумулировать большие заряды и бить ими противника. Наиболее преуспели в этом занятии скаты, угри, звездочеты, гимнархи, а также отдельный вид сомов.


Как рыбы вырабатывают электричество?

Все виды электрических морских существ вырабатывают электричество во время движения. За счет того, что мышцы постоянно меняют свою форму и взаимодействуют с окружением, они накапливают электричество. При этом, голова и хвост выступают в роли плюса и минуса соответственно. Это помогает удерживать заряд в мышцах, словно в батареи.

Подробнее разберем, что представляют собой мышцы для накапливания зарядов. Они могут отличаться внешне у каждого вида рыбы, но имеют схожую структуру. Мышцы состоят из столбиков, которые, в свою очередь, разбиты на пластины. Для накапливания электричества столбики соединены параллельно, а пластины последовательно. Между ними находится разность потенциалов, из-за чего при движении аккумулируется энергия, происходит накопление заряда.

Электрические рыбы . Люди ещё в глубокой древности обратили внимание, что некоторые рыбы как-то по особенному добывают себе пищу. И лишь совсем недавно, по историческим меркам, стало понятно, как они это делают. Оказывается есть такие рыбы, которые создают электрический разряд. Этот разряд парализует или убивает других рыб и даже совсем не маленьких животных.

Плывёт такая рыбина, плывёт никуда не торопясь. Как только недалеко от неё оказывается другая рыба, создаётся электрический разряд. Всё, обед готов. Можно подплывать и заглатывать парализованную или убитую электрическим током рыбу.

Как же это получается у рыб создавать электрический импульс? Дело в том, что в организме таких рыб имеются самые настоящие батарейки. Их количество и размеры у рыб разные, но принцип действия один и тот же. Именно по такому же принципу устроены современные аккумуляторные батарейки.

Собственно, современные батареи и созданы по образцу и подобию рыбных. Два электрода, между ними электролит. Этот принцип был однажды подсмотрен у электрического ската. много ещё интересных неожиданностей таит природа матушка!

Сегодня в мире насчитывается более трёхсот видов электрических рыб. Они имеют самые разные размеры и вес. Всех их объединяет способность создавать электрический разряд или даже целую серию разрядов. Но всё же считается, что самыми мощными электрическими рыбами являются скаты, сомы и угри.

Электрические скаты имеют плоскую голову и тело. Голова чаще в форме диска. Они имеют небольшой хвост с плавником. Электрические органы расположены по бокам головы. Ещё пара небольших электрических органов расположены на хвосте. Они есть даже у тех скатов, которые не относятся к электрическим.

Электрические скаты могут вырабатывать электрический импульс напряжением до четырёхсот пятидесяти вольт. Этим импульсом они могут не только обездвиживать, но и убивать небольших рыб. Человеку, если он попадёт в зону действия импульса, тоже мало не покажется. Но человек, скорее всего останется жив, хотя наверняка испытает неприятные в своей жизни моменты.

Электрические сомы , так же как и скаты, создают электрический импульс. Его напряжение может быть у крупных сомов, так же как и у скатов, до 450 вольт. При поимке такого сомика, так же можно получить весьма ощутимый удар током. Электрические сомы обитают в водоёмах Африки и достигают размеров до 1 метра. Их вес может быть до 23 килограммов.

Но, самая опасная рыба обитает в водоёмах Южной Америки. Это электрические угри . Они бывают очень немаленьких размеров. Взрослые особи достигают в длину трёх метров и веса до двадцати килограммов. Эти электрические гиганты могут создавать электрический импульс напряжением до одной тысячи двухсот вольт.

Импульсом с таким напряжением они могут убить и довольно крупных животных, оказавшихся некстати рядом. Такой же исход может ожидать и человека. Мощность электрического разряда достигает шести киловатт. Мало не покажется. Вот такие они — живые электростанции.

Просмотров