Признаки деления на 14. Основные признаки делимости

Математика в 6 классе начинается с изучения понятия делимости и признаков делимости. Часто ограничиваются признаками делимости на такие числа:

  • На 2 : последняя цифра должна быть 0, 2, 4, 6 или 8;
  • На 3 : сумма цифр числа должна делиться на 3;
  • На 4 : число, образованное последними двумя цифрами, должно делиться на 4;
  • На 5 : последняя цифра должна быть 0 или 5;
  • На 6 : число должно обладать признаками делимости на 2 и на 3;
  • Признак делимости на 7 часто пропускается;
  • Редко таже рассказывают и о признаке делимости на 8 , хотя он аналогичен признакам делимости на 2 и на 4. Чтобы число делилось на 8, необходимо и достаточно, чтобы трёхцифреное окончание делилось на 8.
  • Признак делимости на 9 знают все: сумма цифр числа должна делиться на 9. Что, правда, не развивает иммунитет против всяческих трюков с датами, которые используют нумерологи.
  • Признак делимости на 10 , наверное, самый простой: число должно оканчиваться нулём.
  • Иногда шестиклассникам рассказывают и о признаке делимости на 11 . Нужно цифры числа, стоящие на чётных местах сложить, из результата вычесть цифры, стоящие на нечётных местах. Если результат будет делиться на 11, то и само число делится на 11.
Вернёмся теперь к признаку делимости на 7. Если о нём рассказывают, тот объединяют с признаком делимости на 13 и советуют использовать так.

Берём число. Разбиваем его на блоки по 3 цифры в каждом (самый левый блок может содержать одну или 2 цифры) и попеременно складываем/вычитаем эти блоки.

Если результат делится на 7, 13 (или 11), то и само число делится на 7, 13 (илb 11).

Основан этот способ, как и ряд математических фокусов на том, что 7х11х13 = 1001. Однако что делать с трехзначными числами, для которых вопрос делимости, бывает, тоже не решить без самого деления.

Используя универсальный признак делимости , можно построить относительно простые алгоритмы определения, делится ли число на 7 и другие "неудобные" числа.

Усовершенствованный признак делимости на 7
Чтобы проверить, делится ли число на 7, надо от числа отбросить последнюю цифру и от получившегося результата эту цифру дважды отнять. Если результат делится на 7, то и само число делится на 7.

Пример 1:
Делится ли на 7 число 238?
23-8-8 = 7. Значит, число 238 делится на 7.
Действительно, 238 = 34х7

Это действие можно проводить многократно.
Пример 2:
Делится ли на 7 число 65835?
6583-5-5 = 6573
657-3-3 = 651
65-1-1 = 63
63 делится на 7 (если бы мы этого не заметили, то могли бы сделать ещё 1 шаг: 6-3-3 = 0, а 0 уж точно делится на 7).

Значит, и число 65835 делится на 7.

На основе универсиального признака делимости, можно усовершенствовать признаки делимости на 4 и на 8.

Усовершенствованный признак делимости на 4
Если половина числа единиц в сумме с числом десятков - чётнное число, то число делится на 4.

Пример 3
Делится ли число 52 на 4?
5+2/2 = 6, число чётное, значит, число на 4 делится.

Пример 4
Делится ли число 134 на 4?
3+4/2 = 5, число нечётное, значит, 134 на 4 не делится.

Усовершенствованный признак делимости на 8
Если сложить удвоенное число сотен, число десятков и половину числа единиц, и результат будет делиться на 4, то само число делится на 8.

Пример 5
Делится ли число 512 на 8?
5*2+1+2/2 = 12, число делится на 4, значит, 512 делится на 8.

Пример 6
Делится ли число 1984 на 8?
9*2+8+4/2 = 28, число делится на 4, значит, 1984 делится на 8.

Признак делимости на 12 - это объединение признаков делимсоти на 3 и на 4. Это же работает и для любых n, являющихся произведением взаимнопростых p и q. Чтобы число делилось на n (которое равно произведению pq,актих, что НОД(p,q)=1), одно должно делиться одновремено на p и на q.

Однако будьте внимательны! Чтобы работали составные признаки делимости, множители числа должны быть именно взаимнопростыми. Нельзая сказать, что число делится на 8, если оно делится на 2 и на 4.

Усовершенствованный признак делимости на 13
Чтобы проверить, делится ли число на 13, надо от числа отбросить последнюю цифру и к получившемуся результату её четырежды прибавить. Если результат делится на 13, то и само число делится на 13.

Пример 7
Делится ли на 8 число 65835?
6583+4*5 = 6603
660+4*3 = 672
67+4*2 = 79
7+4*9 = 43

Число 43 не делится на 13, значит, и число 65835 не делится на 13.

Пример 8
Делится ли на 13 число 715?
71+4*5 = 91
9+4*1 = 13
13 делится на 13, значит, и число 715 делится на 13.

Признаки делимости на 14, 15, 18, 20, 21, 24, 26, 28 и прочие составные числа, не являющиеся степенями простых, аналогичны признакам делимости на 12. Мы проверяем делимость на взаимно-простыем множители этих чисел.

  • Для14: на 2 и на 7;
  • Для 15: на 3 и на 5;
  • Для 18: на 2 и на 9;
  • Для 21: на 3 и на 7;
  • Для 20: на 4 и на 5 (или, по-другому, последняя цифра должна быть нулём, а предпоследняя - чётной);
  • Для 24: на 3 и на 8;
  • Для 26: на 2 и на 13;
  • Для 28: на 4 и на 7.
Усовершенствованный признак делимости на 16.
Вместо того, чтобы проверять, делится ли 4-циферное окончание числа на 16, можно сложить цифру единиц с увеличенной в 10 раз цифрой десятков, с учетверённой цифрой сотен и с
увеличенной в восемь раз цифрой тысяч, и проверить, делится ли результат на 16.

Пример 9
Делится ли число 1984 на 16?
4+10*8+4*9+2*1 = 4+80+36+2 = 126
6+10*2+4*1=6+20+4=30
30 не делится на 16, значит, и 1984 не делится на 16.

Пример 10
Делится ли число 1526 на 16?
6+10*2+4*5+2*1 = 6+20+20+2 = 48
48 не делитсся на 16, значит, и 1526 делится на 16.

Усовершенствованный признак делимости на 17.
Чтобы проверить, делится ли число на 17, надо от числа отбросить последнюю цифру и от получившегося результата эту цифру пять раз отнять. Если результат делится на 13, то и само число делится на 13.

Пример 11
Делится ли число 59772 на 17?
5977-5*2 = 5967
596-5*7 = 561
56-5*1 = 51
5-5*5 = 0
0 делится на 17, значит и число 59772 делится на 17.

Пример 12
Делится ли число 4913 на 17?
491-5*3 = 476
47-5*6 = 17
17 делится на 17, значит и число 4913 делится на 17.

Усовершенствованный признак делимости на 19.
Чтобы проверить, делится ли число на 19, надо удвоенную последнюю цифру прибавить к числу, оставшемуся после отбрасывания последней цифры.

Пример 13
Делится ли число 9044 на 19?
904+4+4 = 912
91+2+2 = 95
9+5+5 = 19
19 делится на 19, значит и число 9044 делится на 19.

Усовершенствованный признак делимости на 23.
Чтобы проверить, делится ли число на 23, надо последнюю цифру, увеличенную в 7 раз, прибавить к числу, оставшемуся после отбрасывания последней цифры.

Пример 14
Делится ли число 208012 на 23?
20801+7*2 = 20815
2081+7*5 = 2116
211+7*6 = 253
Вообще-то, уже можно заметить, что 253 - это 23,

Математика - самая древняя наука, она была и остаётся необходимой людям. Слово математика греческого происхождения. Оно означает «наука», «размышление».

В древности полученные знания, открытия часто старались сохранить в тайне. Например, в школе Пифагора было запрещено делиться своими знаниями с непифагорейцами.

За нарушение этого правила один из учеников, требовавший свободного обмена знаниями, - Гиппас был изгнан из школы. Сторонников Гиппаса стали называть математиками, то есть приверженцами науки. Основы математики все без исключения начинают изучать с первых классов школы и с каждым годом знания расширяются. Математика прошла во все отрасли знаний – физику, химию, науки о языке, медицину, астрономию и т. д. Математики учат вычислительные машины сочинять стихи и музыку, измерять размеры атомов и проектировать плотины, электростанции и т. д. Много интересного можно узнать из математики. Мне нравится тема «Признаки делимости», которую мы изучали в 6 классе и я решил узнать об этой теме побольше.

Цель данной работы осветить признаки делимости на 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 15, 25, 125.

Зная из 6 класса признаки делимости на 2, 3, 5, 9, 10 легко вывести признаки делимости на 4, 6, 8, 12, 15, 25, 125.

Эти признаки я объединил в таблицу.

на 2 На 2 делятся те, и только те натуральные числа, запись которых оканчивается на четные цифры (0,2,4, 6,8)

на 3 На 3 делятся те, и только те натуральные числа, сумма цифр которых делится на 3

На 4 делятся те, и только те натуральные числа, в записи которых последние две цифры образуют число, делящееся на 4

на 5 На 5 делятся те, и только те натуральные числа, запись которых оканчивается на 0 или на 5.

на 6 На 6 делятся те, и только те натуральные числа, которые оканчиваются чётной цифрой, и сумма цифр делится на 3

на 8 На 8 делятся те, и только те натуральные числа, в записи которых три последние цифры образуют число, делящееся на 8

на 9 На 9 делятся те, и только те натуральные числа, сумма цифр которых делится на 9

на 10 На10 делятся те, и только те натуральные числа, запись которых оканчивается на 0

на 12 На 12 делятся те, и только те натуральные числа, в записи которых две последние цифры образуют число, делящееся на 4 и сумма цифр числа делится на 3

на 15 На 15 делятся те, и только те натуральные числа, запись которых оканчивается на 0 или на 5 и сумма цифр делится на 3

на 25. Для того чтобы натуральное число содержащее не менее трёх цифр, делилось на 25 необходимо и достаточно, чтобы делилось на 25 число, образованное двумя последними на 125 Для того чтобы натуральное число содержащее не менее четырёх цифр делилось на 125 необходимо и достаточно чтобы делилось на 125 число образованное тремя последними цифрами.

Признаки делимости

Изучая разную литературу, я нашёл признак делимости на 11.

Число делится на 11, если разность между суммой его цифр, стоящих на нечётных местах и суммой цифр, стоящих на чётных местах делится на 11. (нумерация цифр ведётся слева направо или справа налево). Например число 120340568.

Найдём сумму его цифр стоящих на нечётных местах 1+0+4+5+8=18 и на чётных местах 2+3+0+6=11.

Разность между найденными суммами 18-11=7.

7 не делится на 11, значит и данное число не делится на 11.

Признак делимости на 11 можно сформулировать и по-другому.

Если алгебраическая сумма цифр числа с чередующимися знаками делится на 11, то и само число делится на 11.

Например: не выполняя деления, доказать, что число 86849796 делится на 11.

Решение: Составим алгебраическую сумму цифр данного числа, начиная с цифры единиц и чередующимися знаками «+» и «-».

6 – 9 + 7-9 + 4 – 8 + 6 – 8 = -11

11 делится на 11, значит, число 86849796 делится на 11.

И вот ещё один признак делимости на 11.

Чтобы узнать делится ли число на 11 - надо от числа десятков отнять число единиц и посмотреть, делится ли эта разность на 11.

Возьмем, например число 583, и применим этот признак:

58-3=55; 55 делится на 11, значит, и 583 делится на 11.

Проверим теперь на четырёхзначном числе.

Например: 3597

359-7=352 не понятно делится или нет.

35-2=33; 33 делится на 11, значит, число 3597 делится на 11.

Интересны признаки делимости на 7 и 13.

Для того чтобы натуральное число делилось на 7 или 13 необходимо и достаточно, чтобы алгебраическая сумма чисел, образующих грани по 3 цифры (начиная с цифры единиц), взятых со знаком «+» для нечётных граней и со знаком «-» для чётных граней, делилась на 7.

Не выполняя деление доказать, что число 254390815 делится на 7.

Разобьём число на грани 254,390,815. Составим алгебраическую сумму граней, начиная с последней грани и чередуя знаки «+» и «-».

Число 679 делится на 7, то и число 254390815 делится на 7.

Не выполняя деление доказать, что число 304954 делится на 13.

Разобьём на грани 304 и 954 составим алгебраическую сумму граней 954-304=650.

Число 650 делится на 13, значит, 304954 делится на 13.

И существует ещё один признак делимости, объединяющий числа 7, 11, 13.

Числа 7, 11, 13 связаны между собой загадочным числом 7 *11*13=1001

1001 - это 77 чертовых дюжен;

1001 - это 143 семерки;

1001 - это 91 раз по 11.

А еще число1001 – это число Шехерезады.

Вникнув в запись 7*11*13=1001, можно добавить следующее: возьмем некоторое число 235 и умножим его на 1001, получим 235235.

Так как 1001 делится на 7, 11, 13 то и число 235235 делится на 7, 11, 13. Отсюда следует вывод: числа вида abcabc делятся на 7, 11, 13. Есть, конечно, и другие признаки делимости, которые я ещё не знаю. И что можно с помощью вычислительной техники узнать делится ли число на другое число, но уже то, что существуют такие признаки делимости и чтобы познакомиться с ними, надо изучить дополнительную литературу, и расширив свои знания, получить при этом большое удовольствие.


Серию статей о признаках делимости продолжает признак делимости на 3 . В этой статье сначала дана формулировка признака делимости на 3 , и приведены примеры применения этого признака при выяснении, какие из данных целых чисел делятся на 3 , а какие – нет. Дальше дано доказательство признака делимости на 3 . Также рассмотрены подходы к установлению делимости на 3 чисел, заданных как значение некоторого выражения.

Навигация по странице.

Признак делимости на 3, примеры

Начнем с формулировки признака делимости на 3 : целое число делится на 3 , если сумма его цифр делится на 3 , если же сумма цифр данного числа не делится на 3 , то и само число не делится на 3 .

Из приведенной формулировки понятно, что признаком делимости на 3 не удастся воспользоваться без умения выполнять . Также для успешного применения признака делимости на 3 нужно знать, что из всех на 3 делятся числа 3 , 6 и 9 , а числа 1 , 2 , 4 , 5 , 7 и 8 – не делятся на 3 .

Теперь можно рассмотреть простейшие примеры применения признака делимости на 3 . Выясним, делится ли на 3 число −42 . Для этого вычисляем сумму цифр числа −42 , она равна 4+2=6 . Так как 6 делится на 3 , то в силу признака делимости на 3 можно утверждать, что и число −42 делится на 3 . А вот целое положительное число 71 на 3 не делится, так как сумма его цифр равна 7+1=8 , а 8 не делится на 3 .

А делится ли на 3 число 0 ? Чтобы ответить на этот вопрос, признак делимости на 3 не понадобится, здесь нужно вспомнить соответствующее свойство делимости , которое утверждает, что нуль делится на любое целое число. Таким образом, 0 делится на 3 .

В некоторых случаях чтобы показать, что данное число обладает или не обладает способностью делиться на 3 , к признаку делимости на 3 приходится обращаться несколько раз подряд. Приведем пример.

Пример.

Покажите, что число 907 444 812 делится на 3 .

Решение.

Сумма цифр числа 907 444 812 равна 9+0+7+4+4+4+8+1+2=39 . Чтобы выяснить, делится ли 39 на 3 , вычислим его сумму цифр: 3+9=12 . А чтобы узнать, делится ли 12 на 3 , находим сумму цифр числа 12 , имеем 1+2=3 . Так как мы получили число 3 , которое делится на 3 , то в силу признака делимости на 3 число 12 делится на 3 . Следовательно, 39 делится на 3 , так как сумма его цифр равна 12 , а 12 делится на 3 . Наконец, 907 333 812 делится на 3 , так как сумма его цифр равна 39 , а 39 делится на 3 .

Для закрепления материала разберем решение еще одного примера.

Пример.

Делится ли на 3 число −543 205 ?

Решение.

Вычислим сумму цифр данного числа: 5+4+3+2+0+5=19 . В свою очередь сумма цифр числа 19 равна 1+9=10 , а сумма цифр числа 10 равна 1+0=1 . Так как мы получили число 1 , которое не делится на 3 , из признака делимости на 3 следует, что 10 не делится на 3 . Поэтому 19 не делится на 3 , так как сумма его цифр равна 10 , а 10 не делится на 3 . Следовательно, исходное число −543 205 не делится на 3 , так как сумма его цифр, равная 19 , не делится на 3 .

Ответ:

Нет.

Стоит заметить, что непосредственное деление данного числа на 3 также позволяет сделать вывод о том, делится ли данное число на 3 нацело, или нет. Этим мы хотим сказать, что не нужно пренебрегать делением в пользу признака делимости на 3 . В последнем примере, 543 205 на 3 , мы бы убедились, что 543 205 не делится нацело на 3 , откуда можно было бы сказать, что и −543 205 не делится на 3 .

Доказательство признака делимости на 3

Доказать признак делимости на 3 нам поможет следующее представление числа a . Любое натуральное число a мы можем , после чего позволяет получить представление вида , где a n , a n−1 , …, a 0 – цифры, стоящие слева направо в записи числа a . Для наглядности приведем пример такого представления: 528=500+20+8=5·100+2·10+8 .

Теперь запишем ряд достаточно очевидных равенств: 10=9+1=3·3+1 , 100=99+1=33·3+1 , 1 000=999+1=333·3+1 и так далее.

Подставив в равенство a=a n ·10 n +a n−1 ·10 n−1 +…+a 2 ·10 2 +a 1 ·10+a 0 вместо 10 , 100 , 1 000 и так далее выражения 3·3+1 , 33·3+1 , 999+1=333·3+1 и так далее, получим
.

И позволяют полученное равенство переписать так:

Выражение есть сумма цифр числа a . Обозначим ее для краткости и удобства буквой А , то есть, примем . Тогда получим представление числа a вида , которым и воспользуемся при доказательстве признака делимости на 3 .

Также для доказательства признака делимости на 3 нам потребуются следующие свойства делимости:

  • чтобы целое число a делилось на целое число b необходимо и достаточно, чтобы a делился на модуль числа b ;
  • если в равенстве a=s+t все члены, кроме какого-то одного, делятся на некоторое целое число b , то и этот один член делится на b .

Теперь мы полностью подготовлены и можем провести доказательство признака делимости на 3 , для удобства этот признак сформулируем в виде необходимого и достаточного условия делимости на 3 .

Теорема.

Для делимости целого числа a на 3 необходимо и достаточно, чтобы сумма его цифр делилась на 3 .

Доказательство.

Для a=0 теорема очевидна.

Если a отлично от нуля, то модуль числа a является натуральным числом, тогда возможно представление , где - сумма цифр числа a .

Так как сумма и произведение целых чисел есть целое число, то - целое число, тогда по определению делимости произведение делится на 3 при любых a 0 , a 1 , …, a n .

Если сумма цифр числа a делится на 3 , то есть, А делится на 3 , то в силу свойства делимости, указанного перед теоремой, делится на 3 , следовательно, a делится на 3 . Так доказана достаточность.

Если a делится на 3 , то и делится на 3 , тогда в силу того же свойства делимости число А делится на 3 , то есть, сумма цифр числа a делится на 3 . Так доказана необходимость.

Другие случаи делимости на 3

Иногда целые числа задаются не в явном виде, а как значение некоторого при данном значении переменной. Например, значение выражения при некотором натуральном n является натуральным числом. Понятно, что при таком задании чисел для установления их делимости на 3 не поможет непосредственное деление на 3 , да и признак делимости на 3 удастся применить далеко не всегда. Сейчас мы рассмотрим несколько подходов к решению подобных задач.

Суть этих подходов заключается в представлении исходного выражения в виде произведения нескольких множителей, и если хотя бы один из множителей будет делиться на 3 , то в силу соответствующего свойства делимости можно будет сделать вывод о делимости на 3 всего произведения.

Иногда реализовать такой подход позволяет . Рассмотрим решение примера.

Пример.

Делится ли значение выражения на 3 при любом натуральном n ?

Решение.

Очевидно равенство . Воспользуемся формулой бинома Ньютона:

В последнем выражении мы можем вынести 3 за скобки, при этом получим . Полученное произведение делится на 3 , так как содержит множитель 3 , а значение выражения в скобках при натуральных n представляет собой натуральное число. Следовательно, делится на 3 при любом натуральном n .

Ответ:

Да.

Во многих случаях доказать делимость на 3 позволяет . Разберем его применение при решении примера.

Пример.

Докажите, что при любом натуральном n значение выражения делится на 3 .

Решение.

Для доказательства применим метод математической индукции.

При n=1 значение выражения равно , а 6 делится на 3 .

Предположим, что значение выражения делится на 3 при n=k , то есть, делится на 3 .

Учитывая, что делится на 3 , покажем, что значение выражения при n=k+1 делится на 3 , то есть, покажем, что делится на 3 .

В этой статье мы рассмотрим признаки делимости чисел и как использовать признаки делимости при решении задач.

Признаки делимости чисел.

1. Признак делимости на 2 . Число делится на 2, если его запись оканчивается цифрой 0, 2, 4, 6, 8. Числа, которые делятся на 2 называются четными, соответственно, числа, которые на 2 не делятся, называются нечетными.

2. Признак делимости на 5 . Число делится на 5, если его запись оканчивается цифрой 0 или 5.

3. Признак делимости на 10 . Число делится на 10, если его запись оканчивается цифрой 0.

Вообще, если двумя последними цифрами записи числа являются нули, то число делится на 100, если три последние цифры записи числа нули, то на 1000 и т.д.

4. Признак делимости на 4 . Если две последние цифры записи числа образуют число, которое делится на 4, то исходное число делится на 4.

Например, две последние цифры числа 2116 образуют число 16, которое делится на 4, следовательно, 2116 делится на 4.

5. Признак делимости на 3 и на 9 . Если сумма цифр числа делится на 3 (соответственно на 9), то число делится на 3 (соответственно на 9).

Например, число 312 делится на 2 (последняя цифра 2) и на 3 (сумма цифр делится на 3), и, следовательно, на 6.

Вообще, если числа - взаимно простые (то есть не имеют общих делителей) и данное число делится на каждое из этих чисел, то оно делится на произведение этих чисел

6. Признак делимости на 7 . Число делится на 7, когда утроенное число десятков, сложенное с числом единиц делится на 7.

Например, число 427 делится на 7, т.к. число десятков в этом числе 42, 42х3+7=126+7=133; 133 делится на 7, т.к. число десятков в этом числе 13, 13х3+3==39+3=42.

7. Признак делимости на 11 . Число делится на 11, если модуль разности между суммой цифр, стоящих на нечетных местах и, и суммой цифр, занимающих чётные места делится на 11, или если модуль разности равен нулю.

Например, число 12397 делится на 11, т.к. |(1+3+7)-(2+9)|=0

Чтобы установить делимость чисел, пользуются следующими признаками делимости суммы и произведения :

1. Сумма чисел делится на данное число, если каждое слагаемое суммы делится на это число.

2. Произведение чисел делится на данное число, если хотя бы один из множителей делится на это число.

Пример 1. Доказать, что число кратно 5.

Решение. Число кратно 5, если последняя цифра в записи числа равна 0 или 5.

Если число оканчивается цифрой 1, то любая степень этого числа оканчивается цифрой 1, следовательно, число оканчивается цифрой 1.

Если число оканчивается цифрой 6, то любая степень этого числа оканчивается цифрой 6, значит, число оканчивается цифрой 6.

Таким образом, разность оканчивается цифрой 5, и, следовательно, делится на 5.

Пример 2. Найдите наибольшее четырехзначное число, все цифры которого различны и которое делится на 2, 5, 9 и 11.

а) 1. Число делится на 2 и 5, следовательно, последняя цифра - 0

2. Числа 2, 5, 9 и 11 не имеют общих делителей, следовательно искомое число должно делиться на произведение этих чисел, то есть на 990.

Наибольшее четырехзначное число, которое делится на 990 и оканчивается на 0 - это 9900.

По условию нам надо найти число, все цифры которого различны. Предыдущее число, которое делится на 2, 5, 9 и 11 равно 9900-990=8910. Это число удовлетворяет всем условиям задачи.

Ответ: 8910

Пример 3. Использовав все цифры от 1 до 9 по одному разу, составьте наибольшее девятизначное число, делящееся на 11.

Решение. В нашем числе модуль разности между суммой цифр, стоящих на нечетных местах и, и суммой цифр, занимающих чётные места должен делиться на 11.

Число должно быть наибольшим, поэтом цифры, стоящие на первых местах должны быть наибольшими. Пусть число имеет вид Чтобы число делилось на 11, нужно, чтобы значение выражения было кратно 11 или равно нулю.

Упростим выражение, получим:

Поскольку - это цифры, и самые большие уже задействованы, скомбинируем цифры 1, 2, 3, 4, 5 так, чтобы При этом числа в каждой группе: и должны быть расположены в порядке убывания. Подходит такая комбинация:

Ответ: 987652413

Признаками делимости пользуются при разложении числа на простые множители.

Натуральное число называется простым, если оно имеет только 2 различных делителя: единицу и само число .

Например, простыми числами являются числа 2, 3, 5, 7, 11, 13, 17 и т.д.

Внимание! Число 1 не является простым и не является составным.

Чтобы найти последовательность простых чисел, пользуются алгоритмом, который называется решето Эратосфена :

1. Выписываем ряд натуральных чисел:

2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, ...

2.Зачеркиваем числа, кратные числу 2 - каждое второе число после 2:

2, 3, 4 , 5, 6 , 7, 8 , 9, 10 , 11, 12 , 13, 14 , 15, 16 , 17, 18 , 19, 20 , 21, 22 , 23, 24 , 25,...

3. Зачеркиваем числа, кратные числу 3 - каждое третье число после 3:

2, 3, 4 , 5, 6 , 7, 8 , 9 , 10 , 11, 12 , 13, 14 , 15 , 16 , 17, 18 , 19, 20 , 21 , 22 , 23, 24 , 25,...

4. Зачеркиваем числа, кратные числу 5 - каждое пятое число после 5:

2, 3, 4 , 5, 6 , 7, 8 , 9, 10 , 11, 12 , 13, 14 , 15 , 16 , 17, 18 , 19, 20 , 21 , 22 , 23, 24 , 25 ,...

2 , 3 , 4 , 5 , 6 , 7 , 8 , 9, 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17, 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 ,...

Основная теорема арифметики:

Любое натуральное число, большее единицы, можно представить в виде произведения простых сомножителей, причем единственным способом.

Пример 4. Разложить число 4356 на простые множители.

Решение: Применим признаки делимости. Последняя цифра записи числа - четная, разделим число на 2. Будем делить на 2, пока возможно делить нацело.

Число 1089 на 2 уже не делится, но делится на 3 (сумма цифр числа равна 18). Будем делить на 3, пока это возможно.

121 делится на 11.

Итак,

Это равенство называется разложением числа 4356 на простые множители.

Разложение на простые множители широко применяется при решении самых разных задач.

Пример 5. Сократить дробь

Разложим числитель и знаменатель на простые множители:

Пример 6. Извлечь квадратный корень:

Воспользуемся разложением числа 4356 на простые множители:

Пример 7. Найдите наименьшее натуральное число, половина которого - квадрат, треть - куб, а пятая часть - пятая степень.

Наименьшее число, удовлетворяющее этим условиям представляет из себя произведение степеней чисел 2, 3, 5.

Пусть это число имеет вид:

а) Половина числа - квадрат, следовательно, n-1, m и k - четные числа.

б) Треть числа - куб, следовательно, n, m-1 и k делятся на 3.

в) Пятая часть числа - пятая степень, следовательно, n, m и k-1 - кратны 5.

k кратно 2 и 3, следовательно k может быть равно 6 (удовлетворяет а) и б) ), 6-1 делится на 5 (удовлетворяет в) ).

n кратно 3 и 5, следовательно, n может быть равно 15 (удовлетворяет в) и б) ), 15-1 делится на 2 (удовлетворяет а) ).

m - кратно 5 и 2, следовательно, m может быть равно 10 (удовлетворяет в) и а) ), 10-1 делится на 3 (удовлетворяет б) ).

Просмотров