Оледенения земли. «Эпоха Великих Оледенений» – одна из загадок Земли

Около двух миллионов лет назад, в конце неогена, вновь начали подниматься мате­рики и по всей Земле ожили вулканы. Гигантское количество вулканического пепла и частиц почвы было выброшено в атмосферу и загрязнило ее верхние слои до такой степени, что лучи Солнца просто не могли пробиться к поверхнос­ти планеты. Климат стал намного холод­нее, образовались огромные ледники, которые под действием собственной тяжести начали продвигаться с горных хребтов, плоскогорий и возвышенностей на равнины.

Один за другим, словно волны, на Ев­ропу и Северную Америку накатывались периоды оледенений. А ведь еще совсем недавно (в геологическом смысле) кли­мат Европы был теплым, почти тропичес­ким, и ее животное население составля­ли бегемоты, крокодилы, гепарды, анти­лопы - примерно такие же, каких мы видим сейчас в Африке. Четыре периода оледенений - гюнцский, миндельский, рисский и вюрмский - изгнали или унич­тожили теплолюбивых животных и расте­ния, и природа Европы стала в основном такой, какой мы ее видим сейчас.

Под натиском ледников гибли леса и луга, рушились скалы, исчезали реки и озера. Бешеные вьюги завывали над ледяными полями, а вместе со снегом на поверхность ледника выпадала атмо­сферная грязь и она постепенно начала очищаться.

Когда же ледник ненадолго отступал, на месте лесов оставались тундры с их вечной мерзлотой.

Величайшим периодом оледенения было рисское - оно произошло около 250 тысяч лет назад. Толщина ледни­кового панциря, сковавшего половину Европы и две трети Северной Америки, достигала трех километров. Подо льдом скрылись Алтай, Памир и Гималаи.

К югу от границы ледников теперь ле­жали холодные степи, покрытые скудной травянистой растительностью и рощица­ми карликовых берез. Еще южнее начи­налась непроходимая тайга.

Постепенно ледник таял, отступал на север. Однако у побережья Балтийского моря он остановился. Возникло равнове­сие - атмосфера, насыщенная влагой, пропускала ровно столько солнечных лучей, чтобы ледник не рос и не растаял окончательно.

Великие оледенения неузнаваемо изменили рельеф Земли, ее климат, животный и растительный мир. Послед­ствия их мы можем видеть до сих пор - ведь последнее, вюрмское оледенение началось всего 70 тысяч лет назад, а ле­дяные горы исчезли с северного побере­жья Балтийского моря 10-11 тысяч лет назад.

Теплолюбивые животные в поисках пищи отступали все южнее и южнее, а их место занимали такие, которые лучше переносили холод.

Ледники наступали не только из аркти­ческих областей, но и с горных масси­вов - Альп, Карпат, Пиренеев. Порой толщина льда дости­гала трех километ­ров. Словно гигант­ский бульдозер лед­ник сглаживал неровности рельефа. После его отступ­ления оставалась болотистая равнина, покрытая скудной растительностью.

Так, предположительно, выглядели поляр­ные области нашей планеты в неогене и в эпоху Великого оледенения. Площадь постоянного снегового покрова выросла в десятки раз, а там, куда дотянулись язы­ки ледников, десять месяцев в году стояли холода, как в Антарктиде.

Иногда можно слышать утверждение, что ледниковый период уже позади и человеку в дальнейшем не придется сталкиваться с этим явлением. Это было бы справедливо, если бы мы были уверены в том, что современное оледенение на земном шаре — всего лишь остаток Великого четвертичного оледенения Земли и неминуемо вскоре должно исчезнуть. На самом деле ледники продолжают оставаться одним из ведущих компонентов окружающей среды и вносят важный вклад в жизнь нашей планеты.

Образование горных ледников

По мере подъема в горы воздух становится все холоднее. На некоторой высоте зимний снег не успевает стаять за лето; из года в год он накапливается и дает начало ледникам. Ледник — это масса многолетнего льда преимущественно атмосферного происхождения, которая движется под действием силы тяжести и принимает форму потока, купола или плавучей плиты (если речь идет о покровных и шельфовых ледниках).

В верхней части ледника находится область аккумуляции, где идет накопление осадков, которые постепенно преобразуются в лед. Постоянное пополнение запасов снега, его уплотнение, перекристаллизация приводят к тому, что он превращается в крупнозернистую массу ледяных зерен — фирн, а затем под давлением выше лежащих слоев — в массивный глетчерный лед.

Из области аккумуляции лед перетекает в нижнюю часть — так называемую область абляции, где он расходуется преимущественно путем таяния. Верхняя часть горного ледника обычно представляет собой фирновый бассейн. Он занимает кар (или цирк — расширенное верховье долины) и имеет вогнутую поверхность. При выходе из цирка ледник нередко пересекает высокую устьевую ступень — ригель; здесь лед рассекают глубокие поперечные трещины и возникает ледопад. Дальше ледник сравнительно узким языком спускается вниз по долине. Жизнь ледника во многом определяется балансом его массы. При положительном балансе, когда приход вещества на леднике превышает его расход, масса льда увеличивается, ледник становится более активным, продвигается вперед, захватывает новые площади. При отрицательном — становится пассивным, отступает, освобождая из-подо льда долину и склоны.

Вечное движение

Величественные и спокойные, ледники в действительности находятся в непрестанном движении. Медленно текут вниз по склонам так называемые каровые и долинные ледники, растекаются от центра к периферии ледниковые щиты и купола. Это движение определяется силой тяжести и становится возможным благодаря свойству льда деформироваться под напряжением, Хрупкий в отдельных фрагментах, в обширных массивах лед приобретает пластические свойства, подобно застывшему вару, который колется, если по нему ударить, но медленно стекается по поверхности, будучи «сгруженным» в одном месте. Нередки и такие случаи, когда лед почти всей своей массой скользит по ложу или по другим слоям льда — это так называемое глыбовое скольжение ледников. Трещины формируются на одниx и тex же местах ледника, но так как в этом процессе участвуют каждый раз все новыe ледяные массы, то старые трещины, по мере перемещения льда от места их образования, постепенно «залечиваются», то есть смыкаются. Отдельные трещины протягиваются но леднике от нескольких десятков до многих сотен метров, их глубина достигает 20—30, а порой 50 метров и более.

Перемещение тысячетонных ледяных масс хоть и очень медленно, но производит огромную работу — за многие тысячи лет оно неузнаваемо преображает лик планеты. Сантиметр за сантиметром проползает лед по твердым каменным породам, оставляя на них борозды и шрамы, разламывая и унося их с собой. С поверхности Антарктического материка ледники ежегодно сносят слои горных пород толщиной в среднем 0,05 мм. Эта кажущаяся микроскопической величина вырастает уже до 50 м, если принять во внимание весь миллион лет четвертичного периода, когда Антарктический континент был наверняка покрыт льдом. У многих ледников Альп и Кавказа скорость движения льда — около 100 м в год. В более крупных ледниках Тянь-Шаня и Памира лед перемещается за год на 150—300 м, а на некоторых гималайских — до 1 км, то есть по 2—3 м за сутки.

Ледники имеют самые разные размеры: от 1 км в длину — у небольших каровых ледников, до десятков километров — у крупных долинных. Крупнейший в Азии ледник Федченко достигает в длину 77 км. В своем движении ледники переносят на многие десятки, а то и на сотни километров глыбы горных пород, упавших с горных склонов на их поверхность. Подобные глыбы носят название эрратических, то есть «блуждающих», валунов, состав которых отличается oт местных горных пород.

Такие валуны тысячами находят на равнинах Европы и Северной Америки, в долинах на выходе их из гор. Объем некоторых из них достигает нескольких тысяч кубометров. Известен, например, гигантский Ермоловский камень в русле Терека, на выходе из Дарьяльского ущелья Кавказа. Длина камня превышает 28 м, а высота -— около 1 7 м. Источником их появления служат места, где соответствующие породы выходят на поверхность. В Америке это Кордильеры и Лабрадор, в Европе — Скандинавия, Финляндия, Карелия. И принесены они сюда издалека, оттуда, где когда-то существовали огромные ледниковые покровы, напоминанием о которых служит современный ледниковый щит Антарктиды.

Загадка их пульсации

В середине XX века люди столкнулись с еще одной проблемой — пульсирующими ледниками, отличающимися внезапными продвижениями своих концов, вне видимой связи с изменениями климата. Сейчас известны сотни пульсирующих ледников во многих ледниковых районах. Больше всего их на Аляске, в Исландии и на Шпицбергене, в горах Центральной Азии, на Памире.

Общей причиной ледниковых подвижек служит накопление льда в условиях, когда расход его затруднен узостью долины, моренным покровом, взаимным подпруживанием основного ствола и боковых притоков и т.п. Такое накопление создает условия неустойчивости, вызывающие сток льда: большие сколы, разогрев льда с выделением воды в процессе внутреннего таяния, появление водной и водно-глинистой смазки на ложе и сколах. 20 сентября 2002 года в долине реки Геналдон в Северной Осетии произошла катастрофа. Из верховьев долины вырвались огромные массы льда, смешанного с водой и каменным материалом, стремительно пронеслись вниз по долине, уничтожая все на своем пути, и образовали завал, распластавшись на всей Кармадонской котловине перед грядой Скалистого хребта. Виновником катастрофы стал пульсирующий ледник Колка, подвижки которого неоднократно происходили и в прошлом.

У ледника Колка, как и у многих других пульсирующих ледников, затруднен сток льда. В течение многих лет лед накапливается перед препятствием, наращивает массу до определенного критического объема и, когда тормозящие силы не могут противостоять сдвигающим, происходит резкая разрядка напряжения, ледник наступает. В прошлом подвижки ледника Колка происходили около 1835-го, в 1902 и 1969 годах. Они возникали, когда на леднике наращивалась масса в 1—1,3 млн. тонн. Геналдонская катастрофа 1902 гида произошла 3 июля, в разгар жаркого лета. Температура воздуха в этот период превышала норму на 2,7°, прошли сильные ливни. Превратившись в пульпу из льда, воды и морены, ледяной выброс преобразовался в сокрушительный скоростной сель, промчавшийся в считанные минуты. Подвижка 1969 года развивалась постепенно, достигнув наибольшего развития в зимнее время, когда количество талой воды в бассейне было минимальным. Это и определило относительно спокойный ход событий. В 2002 году в леднике накопилось огромное количество воды, ставшей спусковым механизмом подвижки. Очевидно, вода «оторвала» ледник от ложа и сформировался мощный водно-ледово-каменный сель. То, что подвижка была спровоцирована раньше времени и достигла колоссального масштаба, было обусловлено сложившимся комплексом факторов: неустойчивым динамическим состоянием ледника, уже накопившего массу, близкую к критической; мощным скоплением воды в леднике и под ледником; обвалами льда и горной породы, создавшими перегрузку в тыловой части ледника.

Мир без ледников

Общий объем льда на Земле составляет почти 26 млн. км 3 , или около 2% всей земной воды. Эта масса льда равна стоку всех рек земного шара за 700 лет.

Если существующий лед равномерно распределить по поверхности нашей планеты, он покроет ее слоем толщиной 53 м. А если бы этот лед внезапно растаял, то уровень Мирового океана повысился бы на 64 м. При этом оказались бы затопленными густонаселенные плодородные прибрежные равнины на площади около 15 млн. км 2 2 . Такое внезапное таяние произойти не может, но на протяжении геологических эпох, когда ледниковые покровы возникали, а затем постепенно стаивали, колебания уровня моря были еще большими.

Прямая зависимость

Огромно влияние ледников на климат Земли. В зимнее время В полярные области солнечной радиации приходит чрезвычайно мало, так как Солнце не показывается из-за горизонта и здесь господствует полярная ночь. А летом из-за большой продолжительности полярного дня количество поступающей от Солнца лучистой энергии больше, чем даже в районе экватора. Однако температуры остаются по-прежнему низкими, так как до 80% приходящей энергии снежный и ледяной покровы отражают обратно. Совсем иной оказалась бы картина, если бы ледяного покрова не было. В этом случае почти все приходящее летом тепло осваивалось бы и температура в полярных областях отличалась бы от тропической в значительно меньшей cтепени. Так что, не будь вокруг земных полюсов материкового ледникового покрова Антарктиды и ледяного покрова Северного Ледовитого океана, на Земле не было бы привычного нам деления на природные пояса и весь климат был бы гораздо более однообразным. Стоит массивам льда у полюсов растаять, как в полярных областях станет гораздо теплее, а на берегах бывшего Северного Ледовитого океана и на поверхности свободной ото льда Антарктиды появится богатая растительность. Именно так и было на Земле в неогеновом периоде — всего несколько миллионов лет назад на ней был ровный мягкий климат. Впрочем, можно себе представить и другое состояние планеты, когда она целиком покрыта панцирем льда. Ведь, раз образовавшись в определенных условиях, ледники способны разрастаться сами, так как они понижают окружающую температуру и растут в высоту, тем самым распространяясь в более высокие и более холодные слои атмосферы. Откалывающиеся от крупных ледниковых покровов айсберги разносятся по океану, попадают в тропические воды, где их таяние также способствует охлаждению вод и воздуха.

Если образованию ледников ничто не препятствует, то толщина слоя льда могла бы увеличиться до нескольких километров за счет воды из океанов, уровень которых непрерывно бы понижался. Таким путем постепенно все материки оказались бы подо льдом, температура на поверхности Земли понизилась бы примерно до -90°С и органическая жизнь на ней прекратилась бы. К счастью, этого не было на протяжении всей геологической истории Земли, и нет оснований думать, что такое оледенение может произойти в будущем, В настоящее же время Земля переживает состояние частичного оледенения, когда ледниками покрыта лишь десятая часть ее поверхности. Такое состояние отличается неустойчивостью: ледники либо сокращаются, либо увеличиваются в размерах и очень редко остаются неизменными.

Белый покров "голубой планеты"

Если взглянуть на нашу планету из космоса, можно увидеть, что отдельные ее участки выглядят совершенно белыми — это снежный покров, так хорошо знакомый жителям умеренных поясов.

Снег обладает рядом удивительных свойств, делающих его незаменимым компонентом на «кухне» Природы. Снежный покров Земли отражает больше половины лучистой энергии, приходящей к нам от Солнца, тот же, что покрывает полярные ледники (наиболее чистый и сухой), — вообще до 90% солнечных лучей! Впрочем, снег обладает и еще одним феноменальным свойством. Известно, что тепловую энергию излучают все тела, и чем они темнее, тем потери тепла с их поверхности больше. А вот снег, будучи ослепительно белым, способен излучать тепловую энергию почти как абсолютно черное тело. Различия между ними не достигают и 1%. Так что, даже то незначительное тепло, которым обладает снежный покров, быстро излучается в атмосферу. В результате снег еще больше охлаждается, и районы земного шара, покрытые им, становятся источником охлаждения всей планеты.

Особенности шестого континента

Антарктида — самый высокий континент планеты, средняя высота которого равна 2 350 м (средняя высота Европы 340 м, Азии — 960 м). Эта высотная аномалия объясняется тем, что большая часть массы материка сложена льдом, который почти втрое легче каменных пород. Когда-то он был свободен ото льда и ненамного отличался по высоте от других континентов, но постепенно мощный ледяной панцирь покрыл весь материк, а земная кора стала прогибаться под колоссальной нагрузкой. За прошедшие миллионы лет эта избыточная нагрузка, «изостатически компенсировалась», иначе говоря, земная кора прогнулась, но следы ее до сих пор отражены в рельефе Земли. Океанографические исследования прибрежных антарктических вод показали, что материковая отмель (шельф), которая окаймляет все материки мелководной полосой с глубинами не более 200 м, у берегов Антарктиды оказалась на 200—300 м глубже. Причиной этому служит опускание земной коры под тяжестью льда, ранее покрывавшего материковую отмель толщиной 600— 700 м. Сравнительно недавно лед отсюда отступил, но земная кора еще не успела «разогнуться» и, кроме того, она удерживается льдом, лежащим южнее. Неограниченному распространению Антарктического ледникового покрова всегда мешало море.

Всякое расширение ледников за пределы суши возможно лишь при услоиии, что море у берега не глубокое, иначе морские течения и волнения рано или поздно разрушат выдвинувшийся далеко в море лед. Поэтому граница максимального оледенения проходила по внешнему краю материковой отмели. На антарктическое оледенение в целом большое влияние оказывает изменение уровня моря. При понижении уровня Мирового океана ледниковый покров шестого континента начинает наступать, при повышении происходит его отступание. Известно, что за последние 100 лет уровень моря вырос на 18 см, продолжает расти и сейчас. Видимо, с этим процессом связано разрушение некоторых антарктических шельфових ледников, сопровождающееся отколом огромных столовых айсбергов длиной до 150 км. Вместе с тем есть все основания полагать, что масса антарктического оледенения в современную эпоху увеличивается, и это тоже может быть связано с происходящим глобальным потеплением. Действительно, потепление климата вызывает активизацию атмосферной циркуляции и усиление межширотного обмена воздушных масс. На Антарктический материк поступает более теплый и влажный воздух. Однако повышение температуры на несколько градусов не вызывает никакого таяния внутри материка, где сейчас стоят морозы в 40—60°С, в то время как увеличение количества влаги приводит к более обильным снегопадам. Значит, потепление вызывает увеличение питания и рост оледенения Антарктиды.

Последнее максимальное оледенение

Кульминация последней ледниковой эпохи на Земле была 21—17 тыс. лет назад, когда объем льда возрастал приблизительно до 100 млн. км 3 . В Антарктике оледенение в это время захватывало весь континентальный шельф. Объем льда в ледниковом покрове, по-видимому, достигал 40 млн. км 3 , то есть был примерно на 40% больше его современного объема. Граница паковых льдов сдвигалась к северу приблизительно на 10°. В Северном полушарии 20 тыс. лет назад формировался гигантский Панарктический древнеледниковый покров, объединявший Евразийский, Гренландский, Лаврентийский и ряд более мелких щитов, а также обширные плавучие шельфовые ледники. Общий объем щита превышал 50 млн. км 3 , а уровень Мирового океана понижался не менее чем на 125м.

Деградация Панарктического покрова началась 17 тыс. лет назад с разрушения входивших в его состав шельфовых ледников. После этого «морские» части Евразийского и Североамериканского ледниковых покровов, потерявшие устойчивость, стали катастрофически разрушаться. Распад оледенения произошел всего за несколько тысяч лет. От края ледниковых покровов в то время текли огромные массы воды, возникали гигантские подпрудные озера, а их прорывы были во много раз больше современных. В природе господствовали стихийные процессы, неизмеримо более активные, чем сейчас. Это привело к значительному обновлению природной среды, частичной смене животного и растительного мира, началу господства на Земле человека.

12 тыс. лет назад наступил голоцен — современная геологическая эпоха. Температура воздуха в умеренных широтах повысилась на 6° по сравнению с холодным поздним плейстоценом. Оледенение приняло современные размеры.

Древние оледенения...

Идеи о древних оледенениях гор были высказаны еще в конце XVIII века, а о прошлом оледенении равнин умеренных широт — в первой половине XIX века. Теория древнего оледенения не сразу завоевала признание среди ученых. Еще в начале XIX века во многих местах земного шара находили штрихованные валуны горных пород явно не местного происхождения, но что их могло принести, ученые не знали. В

1830 году английский исследователь Ч. Лайель выступил со своей теорией, в которой и разнос валунов, и штриховку скал приписывал действию плавучих морских льдов. Гипотеза Лайеля встретила серьезные возражения. Во время своего знаменитого путешествия на корабле «Бигль» (1831—1835 годы) Ч.Дарвин некоторое время прожил на Огненной Земле, где воочию увидел ледники и порождаемые ими айсберги. Впоследствии он писал, что валуны по морю могут разноситься айсбергами, особенно в периоды более широкого развитии ледников. А после своего путешествия в Альпы в 1857 году и сам Лайель усомнился в правильности своей теории. В 1837 году швейцарский исследователь Л. Агассис впервые объяснил воздействием ледников и полировку скал, и перенос валунов, и отложение морены. Значительный вклад в становление ледниковой теории внесли русские ученые, и прежде всего П.А. Кропоткин. Путешествуя в 1866-м по Сибири, он обнаружил на Па-томском нагорье множество валунов, ледниковых наносов, гладких отполированных скал и связал эти находки с деятельностью древних ледников. В 1871 году Русское географическое общество командировало его в Финляндию — страну с яркими следами недавно отступивших отсюда ледников. Эта поездка окончательно оформила его взгляды. Изучая древние геологические отложения, мы нередко находим тиллиты — грубообломочные окаменевшие морены и ледниково-морские осадки. Они обнаружены на всех континентах в отложениях разного возраста, и по ним восстанавливается ледниковая история Земли за 2,5 млрд. лет, в течение которых планета пережила 4 ледниковые эры, длившиеся от многих десятков до 200 млн. лет. Каждаи такая эра состояла из ледниковых периодов, соизмеримых по длительности с плейстоценом, или четвертичным периодом, а каждый период — из большого числа ледниковых эпох.

Продолжительность ледниковых эр на Земле составляет не менее трети всего времени ее эволюции за последние 2,5 млрд, лет. А если учесть длительные начальные фазы зарождения оледенения и его постепенной деградации, то эпохи оледенения займут почти столько же времени, сколько и теплые, безледные, условия. Последний из ледниковых периодов начался почти миллион лет назад, в четвертичное время, и ознаменовался обширным распространением ледников — Великим оледенением Земли. Под мощными покровами льда оказались северная часть Северо-Американского континента, значительная часть Европы, а возможно, также и Сибирь. В Южном полушарии подо льдом, как и сейчас, находился весь Антарктический материк. В период максимального распространения четвертичного оледенения ледники покрывали свыше 40 млн. км 2 — около четверти всей поверхности материков. Крупнейшим в Северном полушарии был Североамериканский ледниковый щит, достигавший в толщину 3,5 км. Под ледниковым покровом толщиной до 2,5 км оказалась вся северная Европа. Достигнув наибольшего развития 250 тыс. лет назад, четвертичные ледники Северного полушария стали постепенно сокращаться. Оледенение не было непрерывным на протяжении всего четвертичного периода. Существуют геологичоские, палеоботанические и другие доказательства того, что за это время ледники по крайней мере трижды совершенно исчезали, сменяясь эпохами межледниковья, когда климат был теплее современного. Однако на смену этим теплым эпохам приходили похолодания, и ледники распространялись вновь. Сейчас мы живем, по-видимому, в конце четвертой эпохи четвертичного оледенения. Совсем не так, как в Северном полушарии, развивалось четвертичное оледенение Антарктиды. Оно возникло за много миллионов лет до того времени, как появились ледники в Северной Америке и Европе. Помимо климатических условий этому способствовал издавна существовавший здесь высокий материк. В отличие от древних ледниковых покровов Северного полушария, которые то исчезали, то возникали вновь, Антарктический ледниковый покров мало изменялся в своих размерах. Максимальное оледенение Антарктиды было больше современного всего в полтора раза по объему и ненамного больше по площади.

... и их возможные причины

Причина крупных изменений климата и возникновения великих оледенений Земли до сих пор остается загадкой. Все высказанные по этому поводу гипотезы можно объединить в три группы — причину периодических изменений земного климата искали либо вне пределов Солнечной системы, либо в деятельности самого Солнца, либо в процессах, происходящих на Земле.

Галактика
К космическим гипотезам oтносятся предположения о влиянии на похолодание Земли различных участков Вселенной, которые проходит Земля, двигаясь в космосе вместе с Галактикой. Одни считают, что похолодание наступает тогда, когда Земля проходит участки мирового пространства, заполненные газом. Другие — те же последствия приписывают воздействию облаков космической пыли. Согласно еще одной из гипотез Земля в целом должна испытывать большие изменения, когда она, перемещаясь вместе с Солнцем, переходит из насыщенной звездами части Галактики в ее внешние, разреженные области. Когда земной шар приближается к апогалактию — точке, наиболее удаленной от той части нашей Галактики, где расположено наибольшее количество звезд, он входит в зону «космической зимы» и на нем начинается ледниковая эпоха.

Солнце
Развитие оледенений связывают также с колебаниями активности самого Солнца. Гелиофизики уже давно выяснили периодичность появления на нем темных пятен, вспышек, протуберанцев и научились прогнозировать эти явления. Оказалось, что солнечная активность периодически меняется. Существуют периоды разной длительности: 2—3, 5—6, 11, 22 и около 100 лет. Может так случиться, что кульминации нескольких периодов разной длительности совпадут и солнечная активность будет особенно велика. Но может быть и наоборот — совпадут несколько периодов пониженной солнечной активности, и это вызовет развитие оледенения. Подобные изменения солнечной активности, безусловно, отражаются на колебаниях ледников, но вряд ли способны вызвать великое оледенение Земли.

СО 2
Повышение или понижение температуры на Земле может происходить также в случае изменения состава атмосферы. Так, углекислота, свободно пропускающая солнечные лучи к Земле, но поглощающая большую часть ее теплового излучения, служит колоссальным экраном, который препятствует охлаждению нашей планеты. Сейчас содержание в атмосфере С0 2 не превышает 0,03%. Если эта цифра уменьшится вдвое, то средние годовые температуры в умеренных поясах снизятся на 4—5°, что может привести к началу ледникового периода.

Вулканы
Своеобразным экранам может служить и вулканическая пыль, выбрасываемая при крупных извержениях до высоты 40 км. Облака вулканической пыли, с одной стороны, задерживают солнечные лучи, а с другой — не пропускают земное излучение. Но первый процесс сильнее второго, поэтому периоды усиленного вулканизма должны вызывать охлаждение Земли.

Горы
Широко известна и идея о связи оледенения на нашей планете с горообразованием. Во время эпох горообразования поднимавшиеся крупные массы континентов попадали в более высокие слои атмосферы, охлаждались и служили местами зарождения ледников.

Океан
По мнению многих исследователей, оледенение может возникать также в результате перемены направления морских течений. Например, течение Гольфстрим ранее было отклонено выступом суши, простиравшимся от Ньюфаундленда к островам Зеленого мыса, что способствовало охлаждению Арктики по сравнению с современными условиями.

Атмосфера
В последнее время ученые стали связывать развитие оледенения с перестройкой циркуляции атмосферы — когда в отдельные районы планеты попадает значительно большее количество осадков и при наличии достаточно высоких гор здесь возникает оледенение.

Антарктида
Возможно, возникновению оледенения способствовало поднятие Антарктического материка. В результате разрастания ледникового покрова Антарктиды на несколько градусов уменьшилась температура всей Земли и на несколько десятков метров понизился уровень Мирового океана, что способствовало развитию оледенения на севере.

"Новейшая история"

Последнее отступание ледников, начавшееся свыше 10 тыс. лет назад, осталось на памяти людей. В историческую эпоху — примерно за 3 тыс. лет — наступания ледников происходили в столетия с пониженной температурой воздуха и увеличенной увлажненностью. Такие же условия складывались в последние века прошлой эры и в середине прошлого тысячелетия. Околи 2,5 тыс. лет назад началось значительное похолодание климата. Арктические острова покрылись ледниками, в странах Средиземноморья и Причерноморья на грани новой эры климат был более холодным и влажным, чем сейчас. В Альпах в I тысячелетии до н. э. ледники выдвинулись на более низкие уровни, загромоздили горные перевалы льдами и разрушили некоторые высоко расположенные селения. На эту эпоху приходится крупное наступание кавказских ледников. Совсем другим был климат на рубеже I и II тысячелетий.

Более теплые условия и отсутствие льдов в северных морях позволили мореплавателям Северной Европы проникнуть далеко на север. С 870 года началась колонизация Исландии, где ледников в то время было меньше, чем теперь.

В X веке норманны, ведомые Эйриком Рыжым, обнаружили южную оконечность огромного острова, берега которого заросли густой травой и высоким кустарником, они основали здесь первую европейскую колонию, а землю эту назвали Гренландией.

К концу I тысячелетия сильно отступили и горные ледники в Альпах, на Кавказе, в Скандинавии и Исландии. Климат начал снова серьезно меняться в XIV веке. В Гренландии стали наступать ледники, летнее оттаивание грунтов становилось все более кратковременным, и к концу века здесь прочно установилась вечная мерзлота. Возросла ледовитость северных морей, и предпринимавшиеся в последующие века попытки достигнуть Гренландии обычно заканчивались неудачей. С конца XV века началось наступание ледников во многих горных странах и полярных районах. После сравнительно теплого XVI века наступили суровые столетия, получившие название малого ледникового периода. На юге Европы часто повторялись суровые и продолжительные зимы, в 1621 и 1669 годах замерзал пролив Босфор, а в 1709 году у берегов замерзало Адриатическое море. Во второй половине XIX века завершился малый ледниковый период и началась сравнительно теплая эпоха, продолжающаяся и сейчас.

Что нас ждет?

Потепление XX столетия особенно четко было выражено в полярных широтах Северного полушария. Колебания ледниковых систем характеризуются долей наступающих, стационарных и отступающих ледников. Так, например, для Альп имеются данные, охватывающие все прошедшее столетие. Если доля наступающих альпийских ледников в 40-50-х годах была близка к нулю, то в середине 60-х здесь наступало около 30%, а в конце 70-х — 65—70% обследованных ледников. Подобное их состояние свидетельствовало о том, что антропогенное увеличение содержания двуокиси углерода, других газов и аэрозолей в атмосфере в XX столетии не повлияло на нормальный ход глобальных атмосферных и ледниковых процессов. Однако в конце прошлого века повсюду в горах ледники перешли к отступанию, что стало реакцией на глобальное потепление, тенденция которого особенно усилилась в 1990-х годах.

Известно, что возросшее ныне количество выбросов в атмосферу аэрозоля антропогенного происхождения способствует уменьшению прихода солнечной радиации. В связи с этим появились голоса о начале ледниковой эпохи, но они затерялись в мощной волне опасений грядущего антропогенного потепления из-за постоянного роста С0 2 и других газовых примесей в атмосфере.

Увеличение С0 2 ведет к увеличению количества задерживаемого тепла и тем самым повышает температуру. Такое же воздействие оказывают и некоторые малые газовые примеси, попадающие в атмосферу: фреоны, окислы азота, метан, аммиак и так далее. Но тем не менее далеко не вся масса образующейся при сгорании двуокиси углерода остается в атмосфере: 50—60% промышленных выбросов С0 2 попадают в океан или усваиваются растениями. Многократный рост концентрации С0 2 в атмосфере не ведет к такому же многократному росту температуры. Очевидно, существует природный механизм регулирования, резко замедляющий парниковый эффект при концентрациях С0 2 превышающих двух- или трехкратные.

Какова перспектива роста содержания С0 2 в атмосфере в ближайшие десятилетия и как будет повышаться температура пследавие этого, определенно сказать трудно. Некоторые ученые предполагают ее увеличение в первой четверти XXI века на 1—1,5°, а в дальнейшем и еще больше. Однако эта позиция не доказана, есть много оснований полагать, что современное потепление представляет собой часть естественного цикла колебаний климата и в недалеком будущем сменится похолоданием. Во всяком случае, голоцен, длящийся уже более 11 тыс. лет, оказывается самым длинным межледниковьем за последние 420 тыс. лет и уже скоро, очевидно, закончится. И мы, заботясь о последствиях текущего потепления, не должны забывать и о возможном грядущем похолодании на Земле.

Владимир Котляков, академик, директор Института географии РАН

12 000 лет назад окончился последний ледниковый период. В самый суровый период оледенение грозило человеку вымиранием. Однако после схода ледника он не только выжил, но и создал цивилизацию.

Ледники в истории Земли

Последняя ледниковая эра в истории Земли – Кайнозойская. Она началась 65 миллионов лет назад и продолжается до сих пор. Современному человеку повезло: он живет в межледниковье, в один из самых теплых периодов жизни планеты. Далеко позади самая суровая ледниковая эра – позднепротерозойская.

Несмотря на глобальное потепление, ученые предсказывают наступление нового ледникового периода. И если настоящий наступит лишь через тысячелетия, то малый ледниковый период, который на 2-3 градуса снизит годовые температуры, может наступить довольно скоро.

Ледник стал настоящим испытанием человеку, заставив его изобретать средства для своего выживания.

Последний ледниковый период

Вюрмское или Вислинское оледенение началось примерно 110 000 лет назад и окончилось в десятом тысячелетии до нашей эры. Пик холодов пришелся на период 26-20 тысяч лет назад, завершающую стадию каменного века, когда ледник был наибольшим.

Малые ледниковые периоды

Даже после того, как растаяли ледники, история знала периоды заметных похолоданий и потеплений. Или, по-другому, – климатические пессимумы и оптимумы . Пессимумы иногда называют малыми ледниковыми периодами. В XIV-XIX веках, например, наступил малый ледниковый период, а на время Великого переселения народов приходился раннесредневековый пессимум.

Охота и мясная пища

Существует мнение, согласно которому предок человека был скорее падальщиком, так как не мог спонтанно занять вышестоящую экологическую нишу. А все известные орудия труда служили для разделки останков животных, которые были отобраны у хищников. Однако, вопрос о том, когда и почему человек начал охотиться до сих пор вызывает дискуссии.

В любом случае, благодаря охоте и мясной пище древний человек получал большой запас энергии, позволявший ему лучше выносить холода. Шкуры убитых животных использовались в качестве одежды, обуви и стен жилища, что увеличивало шансы выжить в суровом климате.

Прямохождение

Прямохождение появилось миллионы лет назад, и его роль была куда важнее, чем в жизни современного офисного работника. Освободив руки, человек мог заняться интенсивной постройкой жилища, производством одежды, обработкой орудий труда, добычей и сохранением огня. Прямоходящие предки свободно перемещались в открытой местности, и их жизнь уже не зависела от сбора плодов тропических деревьев. Уже миллионы лет назад они свободно передвигались на большие расстояния и добывали пищу в стоках рек.

Прямохождение сыграло коварную роль, но стало все же скорее преимуществом. Да, человек сам приходил в холодные регионы и приспосабливался к жизни в них, но в то же время мог найти как искусственные, так и природные укрытия от ледника.

Огонь

Огонь в жизни древнего человека изначально был неприятным сюрпризом, а не благом. Несмотря на это, предок человека сначала научился его «гасить», а уже позднее использовать для своих целей. Следы использования огня находят в стоянках, которым 1,5 миллиона лет. Это позволяло улучшить питание за счет приготовления белковой пищи, а также сохранять активность в ночное время. Это дополнительно увеличило время для создания условий выживания.

Климат

Кайнозойская ледниковая эра не была сплошным оледенением. Каждые 40 тысяч лет у предков людей было право на «передышку» – временные оттепели. В это время ледник отступал, а климат становился мягче. В периоды сурового климата естественными убежищами были пещеры или богатые флорой и фауной регионы. Например, юг Франции и Пиренейский полуостров служили убежищем множества ранних культур.

Персидский залив 20 000 лет назад представлял собой богатую лесами и травяной растительностью речную долину, поистине «допотопный» пейзаж. Здесь текли широкие реки, превосходящие по своим размерам Тигр и Ефрат в полтора раза. Сахара в отдельные периоды становилась влажной саванной. Последний раз такое произошло 9000 лет назад. Подтверждением этому могут служить наскальные рисунки, на которых изображено изобилие животных.

Фауна

Огромные ледниковые млекопитающие, например, бизон, шерстистый носорог и мамонт, стали важным и уникальным источником питания древних людей. Охота на таких больших животных требовала большой координации усилий и заметно сплотила людей. Эффективность «коллективной работы» еще не раз себя показала в строительстве стоянок и изготовлении одежды. Олени и дикие лошади у древних людей пользовались не меньшим «почетом».

Язык и общение

Язык был, пожалуй, главным лайфхаком древнего человека. Именно благодаря речи сохранялись и передавались из поколения в поколение важные технологии обработки орудий, добычи и поддержания огня, а также различные приспособления человека для повседневного выживания. Возможно на палеолитическом языке обсуждались детали охоты на крупных зверей и направления миграции.

Аллёрдское потепление

До сих пор ученые спорят: было ли вымирание мамонтов и других ледниковых животных делом рук человека или же вызвано естественными причинами – Аллёрдским потеплением и исчезновением растений кормовой базы. В результате истребления большого количества видов животных, человеку в суровых условиях грозила смерть от нехватки пищи. Известны случаи гибели целых культур одновременно с вымиранием мамонтов (например, культура Кловис в Северной Америке). Тем не менее, потепление стало важным фактором переселения людей в регионы, климат которых стал подходящим для зарождения земледелия.

Чрезвычайно важную роль в формировании природы Земли и, в частности, Севера сыграли ледниковые периоды, или Великие оледенения. С ними связаны колебания уровня моря, сформировавшие морские террасы, образование трогов, появление вечной мерзлоты и многие другие особенности природы Арктики.

Влияние похолодания выходило далеко за пределы ледников: климаты резко отличались от современных, а температуры морских вод были гораздо ниже. Площадь вечной мерзлоты, или многолетнемерзлых грунтов, составляла до 27 миллионов квадратных километров (20% площади суши!), а плавучие льды занимали около половины площади Мирового океана. Если бы Землю в это время посетили разумные существа, она наверняка получила бы название Ледяная планета.

Такая география была свойственна Земле по крайней мере четырежды только за четвертичный период ее существования, а за последние два миллиона лет исследователи насчитывают до 17 оледенений. При этом последняя ледниковая эпоха была не самой грандиозной: около 100 тысяч лет назад лед сковывал до 45 миллионов квадратных километров суши. Межледниковая обстановка на Земле, подобная современной, оказывается сугубо временным состоянием. Ведь оледенения Земли продолжались примерно по 100 тысяч лет каждое, а интервалы потеплений между ними – менее 20 тысяч лет. Даже в довольно теплое настоящее время ледники занимают около 11% площади суши – почти 15 миллионов квадратных километров. Вечная мерзлота широким поясом протягивается через Северную Америку и Евразию. Зимой в Северном Ледовитом океане около 12 миллионов квадратных километров, а в океанах вокруг Антарктиды больше 20 миллионов квадратных километров сковано плавучими льдами.

Отчего же начинаются на Земле ледниковые периоды? Для того чтобы на планете началось оледенение, необходимы два условия. Должно произойти глобальное (т. е. захватывающее большую часть Земли) похолодание – такое, чтобы снег стал одним из основных видов осадков и чтобы, выпав зимой, он не успевал растаять за лето. А кроме того, осадков должно выпадать много – достаточно для обеспечения роста ледников. Оба условия кажутся простыми. Но что приводит к похолоданию? Причин может быть несколько, и какая из них определяла наступление того или иного оледенения, мы не знаем. Может быть, срабатывали несколько причин сразу. Возможные причины оледенений Земли таковы.

Континенты, будучи частями литосферных плит, перемещаются по поверхности Земли подобно плотам на воде. Оказываясь в полярных или приполярных районах (как современная Антарктида), материки попадают в благоприятные для формирования ледникового покрова условия. Здесь мало осадков, но температура достаточно низка, чтобы они выпадали преимущественно в виде снега и не таяли летом. Перемещения географических полюсов могли приводить к перемещениям природных зон, соответственно материк мог попасть в полярные условия не двигаясь – они сами к нему "приходили".

При бурном горообразовании значительные массивы суши могут оказаться выше снеговой линии (т.е. такой высоты, по достижении которой температура становится настолько низка, что накопление снега и льда преобладает над их таянием и испарением). При этом образуются горные ледники, температура становится еще ниже. Похолодание выходит за пределы гор, появляются ледники подножий. Температура падает еще ниже, ледники вырастают и начинается оледенение Земли.

В самом деле, за период с плиоцена до середины плейстоцена Альпы поднялись более чем на две тысячи метров, Гималаи – на три тысячи метров.

На климат и, в частности, на средние температуры воздуха влияет состав атмосферы (парниковый эффект). Возможно еще влияние запыленности атмосферы (например, вулканическим пеплом или пылью, поднятой ударом метеорита). Пыль отражает солнечный свет, и температура понижается.

Океаны влияют на климат многими способами. Один из них – хранение тепла и его перераспределение по планете океаническими течениями. Движения материков могут привести к тому, что приток теплых вод в приполярные районы уменьшится настолько, что они сильно охладятся. Примерно так произошло, когда Берингов пролив, соединяющий Северный Ледовитый океан с Тихим, стал почти закрыт (а бывали периоды, когда он бывал закрыт совсем и когда был широко открыт). Поэтому перемешивание воды в Северном Ледовитом океане затруднено, и почти весь он покрыт льдами.

Похолодания могут быть связаны с уменьшением количества солнечного тепла, приходящего на Землю. Причины этого, возможно, связаны с колебаниями солнечной активности или с колебаниями пространственного взаиморасположения Земли и Солнца. Известны расчеты югославского геофизика М. Миланковича, в 1920-х годах проанализировавшего изменения солнечной радиации в зависимости от изменений в системе Земля – Солнце. Циклы таких изменений примерно совпадают с цикличностью оледенений. На сегодняшний день эта гипотеза – наиболее обоснованная.

Каждый ледниковый период сопровождался характерными процессами. Вырастали материковые ледниковые покровы в высоких и умеренных широтах. Вырастали горные ледники на всей планете. Появлялись шельфовые ледники в полярных районах. Широко распространялись плавучие льды - в высоких широтах с движущимися льдинами и айсбергами на обширных акваториях Мирового океана. Увеличивались территории вечной мерзлоты в высоких и умеренных широтах, за пределами ледников.

Изменялась атмосферная циркуляция – увеличивались перепады температуры в умеренных широтах, учащались штормы в океанах, и иссушались внутренние части материков в тропиках. Перестраивалась и циркуляция океанических вод – течения прекращались или отклонялись из-за разрастания ледниковых покровов. Резко колебался уровень моря (до 250 м), так как разрастание и разрушение ледниковых покровов сопровождались изъятием и возвращением воды в Мировой океан. В связи с этими колебаниями появились и сохраняются в рельефе морские террасы - поверхности, образованные морским прибоем на древних береговых линиях. В настоящее время они могут оказаться выше или ниже современного берега (в зависимости от того, выше или ниже современного был уровень океана в период их образования).

Наконец, происходили громадные изменения в положении и размерах растительных поясов и соответствующие сдвиги в размещении животных.

Самым последним из периодов похолодания был Малый ледниковый период, зафиксированный в истории Западной Европы, Дальнего Востока и других районов. Он начался приблизительно в XI веке, достиг кульминации около 200 лет назад и постепенно ослабевает. В Исландии и Гренландии период 800 – 1000-х годов новой эры отличался теплым сухим климатом. Затем климат резко ухудшился, и за четыре сотни лет поселения викингов в Гренландии пришли в полное запустение из-за усиливавшихся холодов и прекращения контактов с внешним миром. Прохождение судов у побережья Гренландии стало невозможным из-за выноса морских льдов из Арктики. В Скандинавии и ряде других районов Малый ледниковый период проявился крайне суровыми зимами, подвижками ледников и частыми неурожаями.

Что происходило с обитателями северных районов Земли во времена оледенений и разделявших их межледниковий? Разрастание и таяние ледниковых покровов влияют на все живые организмы.

Вблизи экватора изменения климата были не особенно велики, и многие животные (слоны, жирафы, бегемоты, носороги) пережили ледниковые периоды довольно спокойно. В полярных же областях изменения были очень резки. Температура понижалась, воды не хватало (льда и снега было сколько угодно, но и растения и животные нуждаются в жидкой воде), громадные территории были заняты льдом. И чтобы выжить, обитатели Севера должны были уходить на юг. Но любопытно, что и в высоких широтах сохранялись области – убежища, т.е. районы, где сохранялась возможность выживания.

Решающую роль в выживании северных видов сыграла, вероятно, обширная свободная ото льда территория, существовавшая во время максимума оледенения 18 тысяч лет назад в Канадской Арктике, на Аляске и в прилегающих районах. Эта территория известна под названием Берингии. Напомним, что максимум оледенения – это время, когда громадные количества воды оказывались связаны в ледниках, а потому уровень Мирового океана сильно понижался, и шельфы (а в Северном Ледовитом океане они чрезвычайно велики) осушались.

Однако свободные ото льда территории, подобные Берингии, и южные области не смогли спасти всех. И около 10 тысяч лет назад вымерли не только многие виды, но и роды животных и растений (например, мамонтов – Elephas и мастодонтов – Mastodon).

Возможно, впрочем, что это вымирание было связано не только с изменениями в ландшафтной сфере, но и с появлением здесь человека. Может быть, именно охота сыграла решающую роль в жизни и гибели многих обитателей полярных районов.

В истории Земли существовали длительные периоды, когда вся планета была теплой - от экватора до полюсов. Но были и настолько холодные времена, что оледенения достигали тех регионов, которые в настоящее время относятся к умеренным зонам. Скорее всего, смена этих периодов была цикличной. В теплые времена льда могло быть относительно мало, и находился он только в полярных регионах или на вершинах гор. Важная черта ледниковых периодов заключается в том, что они меняют характер земной поверхности: каждое оледенение влияет на внешний вид Земли. Сами по себе эти изменения могут быть маленькими и незначительными, но они носят постоянный характер.

История ледниковых периодов

Мы не знаем точно, сколько ледниковых периодов было на протяжении истории Земли. Нам известно как минимум о пяти, возможно, семи ледниковых периодах, начиная с докембрийского, в частности: 700 миллионов лет назад, 450 миллионов лет назад (ордовикский период), 300 миллионов лет назад - пермо-карбоновое оледенение, один из крупнейших ледниковых периодов, затронувший южные континенты. Под южными континентами подразумевается так называемая Гондвана - древний суперконтинент, включавший в себя Антарктиду, Австралию, Южную Америку, Индию и Африку.

Самое недавнее оледенение относится к периоду, в котором мы живем. Четвертичный период кайнозойской эры начался около 2,5 миллионов лет назад, когда ледники Северного полушария достигли моря. Но первые признаки этого оледенения датируются 50 миллионами лет назад в Антарктике.

Структура каждого ледникового периода периодична: есть относительно короткие теплые эпохи, а есть более длинные периоды обледенения. Естественно, холодные периоды не являются следствием одного лишь оледенения. Оледенение - это наиболее наглядное следствие холодных периодов. Однако существуют достаточно длительные интервалы, которые являются очень холодными, несмотря на отсутствие оледенений. Сегодня примерами таких регионов являются Аляска или Сибирь, где бывает очень холодно зимой, но оледенений нет, так как недостаточно осадков, способных обеспечить достаточное количество воды для образования ледников.

Открытие ледниковых периодов

О том, что на Земле бывают ледниковые периоды, нам известно с середины XIX века. Среди множества имен, связанных с открытием этого феномена, первым обычно называют имя Луи Агассиса, швейцарского геолога, жившего в середине XIX века. Он изучал ледники Альп и осознал, что когда-то они были гораздо более обширными, чем сегодня. Это заметил не только он. В частности, Жан де Шарпантье, еще один швейцарец, также отметил этот факт.

Неудивительно, что эти открытия были сделаны в основном в Швейцарии, так как в Альпах до сих пор существуют ледники, хоть они и достаточно быстро тают. Легко заметить, что когда-то ледники были значительно больше - достаточно посмотреть на швейцарский ландшафт, троги (ледниковые долины) и так далее. Однако именно Агассис первым выдвинул эту теорию в 1840 году, опубликовав ее в книге «Étude sur les glaciers», а позже, в 1844-м, он развил эту идею в книге «Système glaciare». Несмотря на первоначальный скептицизм, со временем люди стали понимать, что это действительно правда.

С появлением геологического картирования, особенно в Северной Европе, стало понятно, что раньше ледники имели огромный масштаб. Тогда шли обширные дискуссии на тему того, как эта информация соотносится с Всемирным потопом, потому что возник конфликт между геологическими доказательствами и библейскими учениями. Изначально ледниковые отложения называли делювиальными, потому что их считали доказательством Всемирного потопа. Только потом стало известно, что такое объяснение не подходит: эти отложения были доказательством холодного климата и обширных оледенений. К началу ХХ века стало понятно, что оледенений было множество, а не одно, и с того момента начала развиваться эта область науки.

Исследования ледниковых периодов

Известны геологические подтверждения ледниковых периодов. Основные доказательства оледенений происходят из характерных отложений, сформированных ледниками. Они сохраняются в геологическом срезе в форме толстых упорядоченных слоев особых наносов (седиментов) - диамиктона. Это просто ледниковые накопления, но они включают в себя не только отложения ледника, но и наносы талой воды, сформированные ее потоками, ледниковыми озерами или ледниками, двигающимися в море.

Существует несколько форм ледниковых озер. Их основное отличие заключается в том, что они представляют собой водное тело, огражденное льдом. Например, если у нас есть ледник, который поднимается в долину реки, то он блокирует долину, как пробка в бутылке. Естественно, когда лед блокирует долину, река все еще будет течь, а уровень воды будет повышаться до тех пор, пока не перельется через края. Таким образом, ледниковое озеро формируется через прямой контакт со льдом. Существуют определенные отложения, которые содержатся в таких озерах и которые мы можем выявить.

Из-за того, как тают ледники, что зависит от сезонных изменений температуры, происходит ежегодный сход льда. Это приводит к ежегодному приросту незначительных отложений, попадающих из-под льда в озеро. Если мы потом посмотрим в озеро, мы увидим там слоистость (ритмичные слоистые осадки), которые также известны под шведским названием «варвы» (varve), что означает «ежегодные накопления». Таким образом, мы действительно можем увидеть ежегодную слоистость в ледниковых озерах. Мы можем даже сосчитать эти варвы и узнать, как долго существовало это озеро. В целом при помощи этого материала мы можем получить очень много информации.

В Антарктике мы можем увидеть огромного размера шельфовые ледники, которые сходят с земли в море. И естественно, лед плавуч, поэтому он держится на воде. По мере того как он плывет, он несет с собой гальку и незначительные отложения. Из-за теплового воздействия воды лед тает и сбрасывает этот материал. Это приводит к формированию процесса так называемого рафтинга пород, которые уходят в океан. Когда мы видим ископаемые отложения этого периода, мы можем узнать, где был ледник, как далеко он протянулся и так далее.

Причины оледенений

Исследователи полагают, что ледниковые периоды возникают потому, что климат Земли зависит от неравномерного прогрева ее поверхности Солнцем. Так, например, экваториальные регионы, где Солнце находится практически вертикально над головой, являются самыми теплыми зонами, а полярные регионы, где оно находится под большим углом к поверхности, - самыми холодными. Это означает, что различие в обогреве разных участков поверхности Земли управляет океанно-атмосферной машиной, которая постоянно пытается перенести тепло с экваториальных регионов к полюсам.

Если бы Земля была обычным шаром, этот перенос был бы очень эффективным, а контраст между экватором и полюсами очень мал. Так было в прошлом. Но так как сейчас есть континенты, они становятся на пути этой циркуляции, и структура ее потоков становится очень сложной. Простые потоки сдерживаются и изменяются - во многом из-за гор, что приводит к тем схемам циркуляции, которые мы видим сегодня и которые управляют пассатами и океаническими течениями. Например, одна из теорий о том, почему ледниковый период начался 2,5 миллиона лет назад, связывает это явление с возникновением Гималайских гор. Гималаи все еще очень быстро растут, и оказывается, что существование этих гор в очень теплой части Земли управляет такими вещами, как система муссонов. Начало четвертичного ледникового периода также ассоциируется с закрытием Панамского перешейка, который соединяет север и юг Америки, что предотвратило перенос тепла с экваториальной зоны Тихого океана в Атлантический.

Если бы расположение континентов относительно друг друга и относительно экватора позволяло циркуляции эффективно работать, то на полюсах было бы тепло, а относительно теплые условия сохранялись бы по всей земной поверхности. Количество тепла, получаемого Землей, было бы постоянно и лишь немного варьировалось. Но так как наши континенты создают серьезные преграды циркуляции между севером и югом, мы имеем ярко выраженные климатические зоны. Это означает, что полюса относительно холодные, а экваториальные регионы - теплые. Когда все происходит так, как сейчас, Земля может меняться под влиянием вариаций в количестве солнечного тепла, которое она получает.

Эти вариации практически полностью постоянны. Причина этого состоит в том, что со временем земная ось меняется, как меняется и земная орбита. С учетом такого сложного климатического зонирования изменение орбиты может поспособствовать долгосрочным изменениям в климате, что приводит к колебанию климата. Из-за этого мы имеем не сплошное обледенение, а периоды обледенений, прерывающиеся теплыми периодами. Это происходит под влиянием орбитальных изменений. Последние орбитальные изменения рассматриваются как три отдельных явления: одно длиной в 20 тысяч лет, второе - в 40 тысяч лет, а третье - в 100 тысяч лет.

Это привело к отклонениям в схеме циклических изменений климата во время ледникового периода. Обледенение, скорее всего, возникло во время этого циклического периода в 100 тысяч лет. Последняя межледниковая эпоха, которая была такой же теплой, как нынешняя, длилась около 125 тысяч лет, а затем наступила длительная ледниковая эпоха, которая заняла около 100 тысяч лет. Сейчас мы живем в очередную межледниковую эпоху. Этот период не будет длиться вечно, поэтому в будущем нас ждет очередная ледниковая эпоха.

Почему завершаются ледниковые периоды

Орбитальные изменения меняют климат, и оказывается, что ледниковые периоды характеризуются чередованиями холодных периодов, которые могут длиться до 100 тысяч лет, и теплых периодов. Мы называем их ледниковой (гляциал) и межледниковой (интергляциал) эпохами. Межледниковая эпоха обычно характеризуется примерно такими же условиями, что мы наблюдаем и сегодня: высокий уровень моря, ограниченные территории обледенения и так далее. Естественно, и сейчас существуют оледенения в Антарктиде, Гренландии и других подобных местах. Но в целом климатические условия относительно теплые. В этом суть интергляциала: высокий уровень моря, теплые температурные условия и в целом достаточно ровный климат.

Но во время ледниковой эпохи среднегодовая температура значительно меняется, вегетативные пояса вынуждены сместиться на север или юг в зависимости от полушария. Регионы вроде Москвы или Кембриджа становятся необитаемыми, по крайней мере зимой. Хотя они могут быть обитаемыми летом из-за сильно выраженного контраста между сезонами. Но что на самом деле происходит: холодные зоны существенно расширяются, среднегодовая температура снижается, и общие климатические условия становятся очень холодными. В то время как самые большие ледниковые события относительно ограничены по времени (возможно, около 10 тысяч лет), весь длинный холодный период может длиться 100 тысяч лет или даже больше. Так выглядит ледниково-межледниковая цикличность.

Из-за длительности каждого периода трудно сказать, когда мы выйдем из текущей эпохи. Это обусловлено тектоникой плит, расположением континентов на поверхности Земли. В настоящее время Северный полюс и Южный полюс изолированы: Антарктика находится на Южном полюсе, а Северный Ледовитый океан на севере. Из-за этого существует проблема с циркуляцией тепла. До тех пор пока не изменится расположение континентов, этот ледниковый период будет продолжаться. В соответствии с долгосрочными тектоническими изменениями можно предположить, что это займет еще 50 миллионов лет в будущем, пока не произойдут существенные изменения, которые позволят Земле выйти из ледникового периода.

Геологические последствия

Это высвобождает огромные участки континентального шельфа, которые сегодня затоплены. Это будет означать, например, что однажды можно будет пройти пешком из Британии во Францию, из Новой Гвинеи в Юго-Восточную Азию. Одно из самых критических мест - это Берингов пролив, связывающий Аляску с Восточной Сибирью. Он достаточно мелкий, около 40 метров, так что если уровень моря опустится до ста метров, то этот участок станет сушей. Это важно также потому, что растения и животные смогут мигрировать через эти места и попадать в регионы, куда сегодня попасть не могут. Таким образом, колонизация Северной Америки зависит от так называемой Берингии.

Животные и ледниковый период

Важно помнить, что мы сами являемся «продуктами» ледникового периода: мы эволюционировали в течение него, поэтому мы можем его пережить. Однако дело не в отдельных индивидах - это вопрос всей популяции. Проблемой сегодня является то, что нас слишком много и наша деятельность существенно изменила естественные условия. В естественных условиях многие животные и растения, которых мы видим сегодня, имеют длинную историю и отлично переживают ледниковый период, хотя есть и те, что эволюционируют незначительно. Они мигрируют, адаптируются. Существуют зоны, в которых животные и растения пережили ледниковый период. Эти так называемые рефугиумы располагались дальше на север или юг от их сегодняшнего места распространения.

Но в результате человеческой деятельности часть видов погибла или вымерла. Это происходило на всех континентах, - возможно, за исключением Африки. Огромное количество больших позвоночных, а именно млекопитающих, а также сумчатых в Австралии, было истреблено человеком. Это было вызвано либо непосредственно нашей деятельностью, например охотой, либо косвенно - разрушением среды их обитания. Животные, обитающие в северных широтах сегодня, в прошлом жили в Средиземноморье. Мы разрушили этот регион настолько, что этим животным и растениям, скорее всего, будет очень сложно вновь его колонизировать.

Последствия глобального потепления

В нормальных условиях по геологическим меркам мы бы достаточно скоро вернулись в ледниковый период. Но из-за глобального потепления, которое является последствием человеческой активности, мы отсрочиваем его. Мы не сможем совсем его предотвратить, так как причины, вызвавшие его в прошлом, существуют и сейчас. Деятельность человека, непредусмотренный природой элемент, влияет на атмосферное потепление, которое уже, возможно, вызвало задержку следующего гляциала.

Сегодня изменения климата - это очень актуальный и волнующий вопрос. Если Гренландский ледяной щит растает, то уровень моря поднимется на шесть метров. В прошлом, во время предыдущей межледниковой эпохи, которая была примерно 125 тысяч лет назад, Гренландский ледяной щит обильно таял, а уровень моря стал на 4–6 метров выше сегодняшнего. Это, конечно, еще не конец света, но и не временная сложность. В конце концов, Земля оправлялась от катастроф и раньше, она сможет пережить и эту.

Долгосрочный прогноз для планеты неплох, но для людей это другой вопрос. Чем больше мы проводим исследований, чем лучше понимаем, как Земля меняется и к чему это ведет, тем лучше мы понимаем планету, на которой живем. Это важно, потому что люди наконец стали задумываться об изменении уровня моря, глобальном потеплении и влиянии всех этих вещей на сельское хозяйство и население. Многое из этого связано с изучением ледниковых периодов. При помощи этих исследований мы узнаем механизмы оледенений, и мы можем использовать это знание с упреждением, пытаясь смягчить некоторые из этих изменений, которые сами и вызываем. Это и есть один из основных результатов и одна из целей исследований ледниковых периодов.
Конечно, главное следствие ледникового периода - это огромные ледниковые щиты. Откуда берется вода? Конечно, из океанов. А что происходит во время ледниковых периодов? Ледники формируются как следствие осадков на суше. Из-за того, что вода не возвращается в океан, уровень моря падает. Во времена наиболее сильных оледенений уровень моря может упасть больше чем на сто метров.

Просмотров