Коэффициент местного сопротивления отвода воздуховода. Проектирование и расчет систем вентиляции

Этим материалом редакция журнала „Мир Климата“ продолжает публикацию глав из книги „Системы вентиляции и кондиционирования. Рекомендации по проектированию для произ-
водственных и общественных зданий “. Автор Краснов Ю.С.

Аэродинамический расчет воздуховодов начинают с вычерчивания аксонометрической схемы (М 1: 100), проставления номеров участков, их нагрузок L (м 3 /ч) и длин I (м). Определяют направление аэродинамического расчета - от наиболее удаленного и нагруженного участка до вентилятора. При сомнениях при определении направления рассчитывают все возможные варианты.

Расчет начинают с удаленного участка: определяют диаметр D (м) круглого или площадь F (м 2) поперечного сечения прямоугольного воздуховода:

Скорость растет по мере приближения к вентилятору.

По приложению Н из принимают ближайшие стандартные значения: D CT или (а х b) ст (м).

Гидравлический радиус прямоугольных воздуховодов (м):

где - сумма коэффициентов местных сопротивлений на участке воздуховодов.

Местные сопротивления на границе двух участков (тройники, крестовины) относят к участку с меньшим расходом.

Коэффициенты местных сопротивлений даны в приложениях.

Схема приточной системы вентиляции, обслуживающей 3-этажное административное здание

Пример расчета

Исходные данные:

№ участков подача L, м 3 /ч длина L, м υ рек, м/с сечение
а × b, м
υ ф, м/с D l ,м Re λ Kmc потери на участке Δр, па
решетка рр на выходе 0,2 × 0,4 3,1 - - - 1,8 10,4
1 720 4,2 4 0,2 × 0,25 4,0 0,222 56900 0,0205 0,48 8,4
2 1030 3,0 5 0,25× 0,25 4,6 0,25 73700 0,0195 0,4 8,1
3 2130 2,7 6 0,4 × 0,25 5,92 0,308 116900 0,0180 0,48 13,4
4 3480 14,8 7 0,4 × 0,4 6,04 0,40 154900 0,0172 1,44 45,5
5 6830 1,2 8 0,5 × 0,5 7,6 0,50 234000 0,0159 0,2 8,3
6 10420 6,4 10 0,6 × 0,5 9,65 0,545 337000 0,0151 0,64 45,7
10420 0,8 ю. Ø0,64 8,99 0,64 369000 0,0149 0 0,9
7 10420 3,2 5 0,53 × 1,06 5,15 0,707 234000 0,0312 ×n 2,5 44,2
Суммарные потери: 185
Таблица 1. Аэродинамический расчет

Воздуховоды изготовлены из оцинкованной тонколистовой стали , толщина и размер которой соответствуют прил. Н из. Материал воздухозаборной шахты - кирпич. В качестве воздухораспределителей применены решетки регулируемые типа РР с возможными сечениями: 100 х 200; 200 х 200; 400 х 200 и 600 х 200 мм, коэффициентом затенения 0,8 и максимальной скоростью воздуха на выходе до 3 м/с.

Сопротивление приемного утепленного клапана с полностью открытыми лопастями 10 Па. Гидравлическое сопротивление калориферной установки 100 Па (по отдельному расчету). Сопротивление фильтра G-4 250 Па. Гидравлическое сопротивление глушителя 36 Па (по акустическому расчету). Исходя из архитектурных требований проектируют воздуховоды прямоугольного сечения.

Сечения кирпичных каналов принимают по табл. 22.7 .

Коэффициенты местных сопротивлений

Участок 1. Решетка РР на выходе сечением 200×400 мм (рассчитывают отдельно):

№ участков Вид местного сопротивления Эскиз Угол α, град. Отношение Обоснование КМС
F 0 /F 1 L 0 /L ст f прох /f ств
1 Диффузор 20 0,62 - - Табл. 25.1 0,09
Отвод 90 - - - Табл. 25.11 0,19
Тройник-проход - - 0,3 0,8 Прил. 25.8 0,2
∑ = 0,48
2 Тройник-проход - - 0,48 0,63 Прил. 25.8 0,4
3 Тройник-ответвление - 0,63 0,61 - Прил. 25.9 0,48
4 2 отвода 250 × 400 90 - - - Прил. 25.11
Отвод 400 × 250 90 - - - Прил. 25.11 0,22
Тройник-проход - - 0,49 0,64 Табл. 25.8 0,4
∑ = 1,44
5 Тройник-проход - - 0,34 0,83 Прил. 25.8 0,2
6 Диффузор после вентилятора h=0,6 1,53 - - Прил. 25.13 0,14
Отвод 600 × 500 90 - - - Прил. 25.11 0,5
∑= 0,64
Конфузор перед вентилятором D г =0,42 м Табл. 25.12 0
7 Колено 90 - - - Табл. 25.1 1,2
Решетка жалюзийная Табл. 25.1 1,3
∑ = 1,44
Таблица 2. Определение местных сопротивлений

Краснов Ю.С.,

1. Потери на трение:

Pтр = (x*l/d) * (v*v*y)/2g,

z = Q* (v*v*y)/2g,

Метод допустимых скоростей

Примечание: скорость воздушного потока в таблице дана в метрах в секунду

Использование прямоугольных воздуховодов

В диаграмме потерь напора указаны диаметры круглых воздуховодов . Если вместо них используются воздуховоды прямоугольного сечения, то необходимо найти их эквивалентные диаметры с помощью приведенной ниже таблицы.

Примечания:

  • Если места недостаточно (например, при реконструкции), выбирают прямоугольные воздуховоды . Как правило, ширина воздуховода в 2 раза больше высоты).

Таблица эквивалентных диаметров воздуховодов

Когда известны параметры воздуховодов (их длина, сечение, коэффициент трения воздуха о поверхность), можно рассчитать потери давления в системе при проектируемом расходе воздуха.

Общие потери давления (в кг/кв.м.) рассчитываются по формуле:

где R - потери давления на трение в расчете на 1 погонный метр воздуховода, l - длина воздуховода в метрах, z - потери давления на местные сопротивления (при переменном сечении).

1. Потери на трение:

В круглом воздуховоде потери давления на трение P тр считаются так:

Pтр = (x*l/d) * (v*v*y)/2g,

где x - коэффициент сопротивления трения, l - длина воздуховода в метрах, d - диаметр воздуховода в метрах, v - скорость течения воздуха в м/с, y - плотность воздуха в кг/куб.м., g - ускорение свободного падения (9,8 м/с2).

Замечание: Если воздуховод имеет не круглое, а прямоугольное сечение, в формулу надо подставлять эквивалентный диаметр, который для воздуховода со сторонами А и В равен: dэкв = 2АВ/(А + В)

2. Потери на местные сопротивления:

Потери давления на местные сопротивления считаются по формуле:

z = Q* (v*v*y)/2g,

где Q - сумма коэффициентов местных сопротивлений на участке воздуховода, для которого производят расчет, v - скорость течения воздуха в м/с, y - плотность воздуха в кг/куб.м., g - ускорение свободного падения (9,8 м/с2). Значения Q содержатся в табличном виде.

Метод допустимых скоростей

При расчете сети воздуховодов по методу допустимых скоростей за исходные данные принимают оптимальную скорость воздуха (см. таблицу). Затем считают нужное сечение воздуховода и потери давления в нем.

Порядок действий при аэродинамическом расчете воздуховодов по методу допустимых скоростей:

Начертить схему воздухораспределительной системы. Для каждого участка воздуховода указать длину и количество воздуха, проходящего за 1 час.

Расчет начинаем с самых дальних от вентилятора и самых нагруженных участков.

Зная оптимальную скорость воздуха для данного помещения и объем воздуха, проходящего через воздуховод за 1 час, определим подходящий диаметр (или сечение) воздуховода.

Вычисляем потери давления на трение P тр.

По табличным данным определяем сумму местных сопротивлений Q и рассчитываем потери давления на местные сопротивления z.

Располагаемое давление для следующих ветвлений воздухораспределительной сети определяется как сумма потерь давления на участках, расположенных до данного ветвления.

В процессе расчета нужно последовательно увязать все ветви сети, приравняв сопротивление каждой ветви к сопротивлению самой нагруженной ветви. Это делают с помощью диафрагм. Их устанавливают на слабо нагруженные участки воздуховодов, повышая сопротивление.

Таблица максимальной скорости воздуха в зависимости от требований к воздуховоду


Метод постоянной потери напора

Данный метод предполагает постоянную потерю напора на 1 погонный метр воздуховода. На основе этого определяются размеры сети воздуховодов. Метод постоянной потери напора достаточно прост и применяется на стадии технико-экономического обоснования систем вентиляции:

В зависимости от назначения помещения по таблице допустимых скоростей воздуха выбирают скорость на магистральном участке воздуховода.

По определенной в п.1 скорости и на основании проектного расхода воздуха находят начальную потерю напора (на 1 м длины воздуховода). Для этого служит нижеприведенная диаграмма.

Определяют самую нагруженную ветвь, и ее длину принимают за эквивалентную длину воздухораспределительной системы. Чаще всего это расстояние до самого дальнего диффузора.

Умножают эквивалентную длину системы на потерю напора из п.2. К полученному значению прибавляют потерю напора на диффузорах.

Теперь по приведенной ниже диаграмме определяют диаметр начального воздуховода, идущего от вентилятора, а затем диаметры остальных участков сети по соответствующим расходам воздуха. При этом принимают постоянной начальную потерю напора.

Диаграмма определения потерь напора и диаметра воздуховодов

В диаграмме потерь напора указаны диаметры круглых воздуховодов. Если вместо них используются воздуховоды прямоугольного сечения, то необходимо найти их эквивалентные диаметры с помощью приведенной ниже таблицы.

Примечания:

Если позволяет пространство, лучше выбирать круглые или квадратные воздуховоды;

Если места недостаточно (например, при реконструкции), выбирают прямоугольные воздуховоды. Как правило, ширина воздуховода в 2 раза больше высоты).

В таблице по горизонтальной указана высота воздуховода в мм, по вертикальной - его ширина, а в ячейках таблицы содержатся эквивалентные диаметры воздуховодов в мм.

Аэродинамический расчет воздуховодов начинается с вычерчивания аксонометри­ческой схемы М 1:100, проставления номеров участков, их нагрузок Ь м /ч, и длин 1, м. Определяется направление аэродинамического расчета - от наиболее удаленного и на­груженного участка до вентилятора. При сомнениях при определении направления рас­считываются все возможные варианты.

Расчет начинают с удаленного участка, рассчитывается его диаметр Д, м, или пло-

Щадь поперечного сечения прямоугольного воздуховода Р, м:

Начало системы у вентилятора

Административные здания 4-5 м/с 8-12 м/с

Производственные здания 5-6 м/с 10-16 м/с,

Увеличиваясь по мере приближения к вентилятору.

Пользуясь Приложением 21 , принимаем ближайшие стандартные значения Дст или (а х Ь)ст

Затем вычисляем фактическую скорость:

2830 *д;

Или———————— ———— - , м/с.

ФАКТ 3660*(а*6)ст

Для дальнейших вычислений определяем гидравлический радиус прямоугольных воздуховодов:

£>1 =--,м. а + Ь

Чтобы избежать пользования таблицами и интерполяцией значений удельных по­терь на трение, применяем прямое решение задачи:

Определяем критерий Рейнольдса:

Яе = 64 100 * Ост * Уфакт (для прямоугольных Ост = Оь) (14.6)

И коэффициент гидравлического трения:

0, 3164*Яе 0 25 при Яе < 60 ООО (14.7)

0, 1266 *Ые 0167 при Яе > 60 000. (14.8)

Потери давления на расчетном участке составят:

Д.

Где КМС - сумма коэффициентов местных сопротивлений на участке воздуховодов.

Местные сопротивления, лежащие на границе двух участков (тройники, крестови­ны), следует относить к участку с меньшим расходом.

Коэффициенты местных сопротивлений приведены в приложениях.

Исходные данные:

Материал воздуховодов - оцинкованная тонколистовая сталь, толщиной и разме­рами в соответствии с Прил. 21 .

Материал воздухозаборной шахты - кирпич. В качестве воздухораспределителей используются решетки регулируемые типа РР с возможными сечениями:

100 х 200; 200 х 200; 400 х 200 и 600 х 200 мм, коэффициентом затенения 0,8 и макси­мальной скоростью воздуха на выходе до 3 м/с.

Сопротивление приемного утепленного клапана с полностью открытыми лопастя­ми 10 Па. Гидравлическое сопротивление калориферной установки равно 132 Па (по отдельному расчету). Сопротивление фильтра 0-4 250 Па. Гидравлическое сопротивле­ние глушителя составляет 36 Па (по акустическому расчету). Исходя из архитектурных требований воздуховоды проектируются прямоугольного сечения.

Подача L, м3/ч

Длина 1, м

Сечение а * Ь, м

Потери на участке р, Па

Решетка РР на выходе

250×250 Ь =1030

500×500 = Lc=6850

Л_ 0,5 *0,5 /с 0,6 *0,5

Расчет приточных и вытяжных систем воздуховодов сводится к определению размеров поперечного сечения каналов, их сопротивления движению воздуха и увязки напора в параллельных соединениях. Расчет потерь напора следует вести методом удельных потерь напора на трение.

Методика расчета:

      Строится аксонометрическая схема вентиляционной системы, система разбивается на участки, на которые наносятся длина и значение расхода. Расчетная схема представлена на рисунке 1.

      Выбирается основное (магистральное) направление, которое представляет собой наиболее протяженную цепочку последовательно расположенных участков.

3. Нумеруются участки магистрали, начиная с участка с наименьшим расходом.

4. Определяются размеры поперечного сечения воздуховодов на расчетных участках магистрали. Определяем площади поперечного сечения, м 2:

F р =L p /3600V p ,

где L р – расчетный расход воздуха на участке, м 3 /ч;

По найденным значениям F р ] принимаются размеры воздуховодов, т.е. находится F ф.

5. Определяется фактическая скорость V ф, м/с:

V ф = L p / F ф,

где L р – расчетный расход воздуха на участке, м 3 /ч;

F ф – фактическая площадь поперечного сечения воздуховода, м 2 .

Определяем эквивалентный диаметр по формуле:

d экв = 2·α·b/(α+b) ,

где α и b – поперечные размеры воздуховода, м.

6. По значениям d экв и V ф определяются значения удельных потерь давления на трение R.

Потери давления на трения на расчетном участке составят

P т =R·l·β ш,

где R – удельные потери давления на трение, Па/м;

l – длина участка воздуховода, м;

β ш – коэффициент шероховатости.

7. Определяются коэффициенты местных сопротивлений и просчитываются потери давления в местных сопротивлениях на участке:

z = ∑ζ·P д,

где P д – динамическое давление:

Pд=ρV ф 2 /2,

где ρ – плотность воздуха, кг/м 3 ;

V ф – фактическая скорость воздуха на участке, м/с;

∑ζ – сумма КМС на участке,

8. Рассчитываются полные потери по участкам:

ΔР = R·l·β ш + z,

l – длина участка, м;

z - потери давления в местных сопротивлениях на участке, Па.

9. Определяются потери давления в системе:

ΔР п = ∑(R·l·β ш + z) ,

где R - удельные потери давления на трение, Па/м;

l – длина участка, м;

β ш – коэффициент шероховатости;

z- потери давления в местных сопротивлениях на участке, Па.

10. Проводится увязка ответвлений. Увязка производится, начиная с самых протяженных ответвлений. Она аналогична расчету основного направления. Сопротивления на всех параллельных участках должны быть равны: невязка не более 10%:

где Δр 1 и Δр 2 – потери в ветвях с большими и меньшими потерями давления, Па. Если невязка превышает заданное значение, то ставится дроссель-клапан.

Рисунок 1 – Расчетная схема приточной системы П1.

Последовательность расчета приточной системы П1

Участок 1-2, 12-13, 14-15,2-2’,3-3’,4-4’,5-5’,6-6’,13-13’,15-15’,16-16’:

Участок 2-3, 7-13, 15-16:

Участок 3-4, 8-16:

Участок 4-5:

Участок 5-6:

Участок 6-7:

Участок 7-8:

Участок 8-9:

Местные сопротивления

Участок 1-2:

а) на выход: ξ = 1,4

б) отвод 90°: ξ = 0,17

в) тройник на прямой проход:

Участок 2-2’:

а) тройник на ответвление

Участок 2-3:

а) отвод 90°: ξ = 0,17

б) тройник на прямой проход:

ξ = 0,25

Участок 3-3’:

а) тройник на ответвление

Участок 3-4:

а) отвод 90°: ξ = 0,17

б) тройник на прямой проход:

Участок 4-4’:

а) тройник на ответвление

Участок 4-5:

а) тройник на прямой проход:

Участок 5-5’:

а) тройник на ответвление

Участок 5-6:

а) отвод 90°: ξ = 0,17

б) тройник на прямой проход:

Участок 6-6’:

а) тройник на ответвление

Участок 6-7:

а) тройник на прямой проход:

ξ = 0,15

Участок 7-8:

а) тройник на прямой проход:

ξ = 0,25

Участок 8-9:

а) 2 отвода 90°: ξ = 0,17

б) тройник на прямой проход:

Участок 10-11:

а) отвод 90°: ξ = 0,17

б) на выход: ξ = 1,4

Участок 12-13:

а) на выход: ξ = 1,4

б) отвод 90°: ξ = 0,17

в) тройник на прямой проход:

Участок 13-13’

а) тройник на ответвление

Участок 7-13:

а) отвод 90°: ξ = 0,17

б) тройник на прямой проход:

ξ = 0,25

в) тройник на ответвление:

ξ = 0,8

Участок 14-15:

а) на выход: ξ = 1,4

б) отвод 90°: ξ = 0,17

в) тройник на прямой проход:

Участок 15-15’:

а) тройник на ответвление

Участок 15-16:

а) 2 отвода 90°: ξ = 0,17

б) тройник на прямой проход:

ξ = 0,25

Участок 16-16’:

а) тройник на ответвление

Участок 8-16:

а) тройник на прямой проход:

ξ = 0,25

б) тройник на ответвление:

Аэродинамический расчет приточной системы П1

Расход, L, м³/ч

Длина, l, м

Размеры воздуховода

Скорость воздуха V, м/с

Потери на 1 м длины уч-ка R, Па

Коэфф. шероховатости m

Потери на трение Rlm, Па

Сумма КМС, Σξ

Динамическое давление Рд, Па

Потери на местные сопр, Z

Потери давления на участке, ΔР, Па

Площадь сечения F, м²

Эквивалентный диаметр

Выполним невязку приточной системы П1, которая должна составить не более 10 %.

Так как невязка превышает допустимые 10%, необходимо поставить диафрагму.

Диафрагму устанавливаю на участке 7-13, V = 8,1 м/с, Р С = 20,58 Па

Следовательно для воздуховода диаметром 450 устанавливаю диафрагму диаметром 309.


К.т.н. С.Б.Горунович, инженер ПТО, «Усть-Илимская ТЭЦ» филиал ОАО «Иркутскэнерго», г. Усть-Илимск Иркутской обл.


Постановка вопроса

Известно, что на многих предприятиях, обладавших в недавнем прошлом резервами тепловой и электрической энергии, уделялось недостаточное внимание ее потерям при транспортировке. Например, различные насосы закладывались в проект, как правило, с большим запасом по мощности, потери давления в трубопроводах компенсировались увеличением подачи. Главные паропроводы проектировались с перемычками и длинными магистралями, позволяющими при необходимости переправлять излишки пара на соседние турбоагрегаты. При реконструкции и ремонте транспортирующих сетей предпочтение уделялось универсальности схем, что приводило к дополнительным врезкам (штуцерам) и перемычкам, установке дополнительных тройников и, как следствие, к дополнительным местным потерям полного давления. При этом известно, что в протяженных трубопроводах при значительных скоростях среды местные потери полного давления (местные сопротивления) могут повлечь за собой существенные потери расходов у потребителей.

В настоящее время требования эффективности, энергосбережения, тотальной оптимизации производства заставляют по-новому взглянуть на многие вопросы и аспекты проектирования, реконструкции и эксплуатации трубопроводов и паропроводов, поэтому учет местных сопротивлений в тройниках, развилках и штуцерах в гидравлических расчетах трубопроводов становится актуальной задачей.

Целью данной работы является описание наиболее часто используемых на предприятиях энергетики тройников и штуцеров, обмен опытом в области путей снижения коэффициентов местного сопротивления, способов сравнительной оценки эффективности подобных мероприятий.

Для оценки местных сопротивлений в современных гидравлических расчетах оперируют безразмерным коэффициентом гидравлического сопротивления, весьма удобным тем, что в динамически подобных потоках, при которых соблюдаются геометрическое подобие участков и равенство чисел Рейнольдса, он имеет одно и то же значение, независимо от вида жидкости (газа), а также от скорости потока и поперечных размеров рассчитываемых участков .

Коэффициент гидравлического сопротивления представляет собой отношение потерянной на данном участке полной энергии (мощности) к кинетической энергии (мощности) в принятом сечении или отношение потерянного на том же участке полного давления к динамическому давлению в принятом сечении :



где  р общ - потерянное (на данном участке) полное давление; р - плотность жидкости (газа); w, - скорость в i-м сечении.

Значение коэффициента сопротивления зависит от того, к какой расчетной скорости и, следовательно, к какому сечению он приведен.


Вытяжной и приточный тройники

Известно, что весомую часть местных потерь в разветвленных трубопроводах составляют местные сопротивления в тройниках. Как объект, представляющий собой местное сопротивление, тройник характеризуется углом ответвления а и отношениями площадей сечения ответвлений (боковых и прямого) F b /F q , Fh/Fq и F B /Fn. В тройнике могут изменяться отношения расходов Q b /Q q , Q n /Q c и, соответственно, отношения скоростей w B /w Q , w n /w Q . Тройники могут быть установлены как на участках всасывания (вытяжной тройник), так и на участках нагнетания (приточные тройники) при разделении потока (рис. 1).



Коэффициенты сопротивления вытяжных тройников зависят от перечисленных выше параметров, а приточных тройников обычной формы - практически только от угла ответвления и отношений скоростей w n /w Q и w n /w Q соответственно .

Коэффициенты сопротивления вытяжных тройников обычной формы (без закруглений и расширения или сужения бокового ответвления, или прямого прохода) могут быть вычислены по следующим формулам .

Сопротивление в боковом ответвлении (в сечении Б):

где Q B =F B w B , Q q =F q w q - объемные расходы в сечении Б и С соответственно.

Для тройников типа F n =F c и при всех а значения A приведены в табл. 1.



При изменении отношения Q b /Q q от 0 до 1 коэффициент сопротивления изменяется в пределах от -0,9 до 1,1 (F q =F b , а=90 О). Отрицательные значения объясняются подсасывающим действием в магистрали при малых Q B .


Из структуры формулы (1) следует, что коэффициент сопротивления будет быстро возрастать с уменьшением площади сечения штуцера (с ростом F c /F b). Например, при Q b /Q c =1, F q/F b =2 , а=90 О коэффициент равняется 2,75.

Очевидно, что снижения сопротивления можно добиться при уменьшении угла бокового ответвления (штуцера). Например, при F c =F b , α=45 О, при изменении отношения Q b /Q c от 0 до 1 коэффициент изменяется в пределах от -0,9 до 0,322, т.е. его положительные значения снижаются почти в 3 раза.

Сопротивление в прямом проходе следует определять по формуле:

Для тройников типа Fn=F c значения К П приведены в табл. 2.

Легко убедиться, что диапазон изменения коэффициента сопротивления в прямом прохо

де при изменении отношения Q b /Q c от 0 до 1 находится в пределах от 0 до 0,6 (F c =F b , α=90 О).

Уменьшение угла бокового ответвления (штуцера) также приводит к значительному снижению сопротивления. Например, при F c =F b , α =45 О, при изменении отношения Q b /Q c от 0 до 1 коэффициент изменяется в пределах от 0 до -0,414, т.е. с ростом Q B в прямом проходе появляется «подсасывание», дополнительно снижающее сопротивление. Следует заметить, что зависимость (2) имеет ярко выраженный максимум, т.е. максимальное значение коэффициента сопротивления приходится на значение Q b /Q c =0,41 и равняется 0,244 (при F c =F b , α =45 О).

Коэффициенты сопротивления приточных тройников нормальной формы при турбулентном течении могут быть вычислены по формулам .

Сопротивление в боковом ответвлении:

где K Б - коэффициент сжатия потока.

Для тройников типа Fn=F c значения А 1 приведены в табл. 3, K B =0.



Если принять F c =F b , а=90 О, то при изменении отношения Q b /Q c от 0 до 1 получим значения коэффициента в диапазоне от 1 до 1,2.

Следует отметить, что в источнике приведены другие данные для коэффициента А 1 . По данным следует принять А 1 =1 при w B /w c <0,8 и А 1 =0,9 при w B /w c >0,8. Если использовать данные из , то при изменении отношения Q B /Q С от 0 до 1 получим значения коэффициента в диапазоне от 1 до 1,8 (F c =F b). В целом по будем получать немногим более высокие значения для коэффициентов сопротивления во всех диапазонах.

Решающее влияние на рост коэффициента сопротивления, как и в формуле (1), оказывает площадь сечения Б (штуцера) - с ростом F g /F b коэффициент сопротивления быстро возрастает.

Сопротивление в прямом проходе для приточных тройников типа Fn=Fc в пределах

Значения т П указаны в табл. 4.



При изменении отношения Q Б /Qс(3 от 0 до 1 (Fc=F Б, α=90 О) получим значения коэффициента в диапазоне от 0 до 0,3.

Сопротивление тройников обычной формы может быть также заметно снижено, если скруглить место стыка бокового ответвления со сборным рукавом. При этом для вытяжных тройников следует скруглить угол поворота потока (R 1 на рис. 16). Для приточных тройников скругление следует выполнить также и на разделяющей кромке (R 2 на рис. 16); оно делает поток более устойчивым и уменьшает возможность его отрыва от этой кромки .

Практически, скругление кромок сопряжения образующих бокового ответвления и основного трубопровода достаточно при R/D(3=0,2-0,3.

Предложенные выше формулы расчета коэффициентов сопротивления тройников и соответствующие им табличные данные относятся к тщательно изготовленным (точеным) тройникам. Производственные дефекты в тройниках, допущенные при их изготовлении («провалы» бокового ответвления и «перекрытие» его сечения неправильным вырезом стенки в прямом участке - основном трубопроводе), становятся источником резкого увеличения гидравлического сопротивления . На практике это случается при некачественной врезке в основной трубопровод штуцера, что имеет место достаточно часто, т.к. «заводские» тройники сравнительно дороги.

Эффективно снижает сопротивление как вытяжных, так и приточных тройников постепенное расширение (диффузор) бокового ответвления. Сочетание скругления, среза кромки и расширения бокового ответвления еще больше снижает сопротивление тройника. Коэффициенты сопротивлений тройников улучшенной формы можно определить по формулам и диаграммам, приведенным в источнике . Наименьшее сопротивление имеют также тройники с боковыми ответвлениями в виде плавных отводов, и там, где это практически возможно, следует применять тройники с малыми углами ответвления (до 60 О) .

При турбулентном течении (Re>4.10 3) коэффициенты сопротивления тройников мало зависят от чисел Рейнольдса. При переходе от турбулентного к ламинарному происходит скачкообразное возрастание коэффициента сопротивления бокового ответвления как в вытяжных, так и в приточных тройниках (примерно в 2-3 раза) .

В расчетах важно учитывать, в каком сечении он приведен к средней скорости. В источнике об этом существует ссылка перед каждой формулой. В источниках приведена общая формула, где указывается скорость приведения с соответствующим индексом.


Симметричный тройник при слиянии и разделении

Коэффициент сопротивления каждого ответвления симметричного тройника при слиянии (рис. 2а), можно вычислить по формуле :



При изменении отношения Q b /Q c от 0 до 0,5, коэффициент изменяется в пределах от 2 до 1,25, и далее с ростом Q b /Q c от 0,5 до 1 коэффициент приобретает значения от 1,25 до 2 (для случая F c =F b). Очевидно, что зависимость (5) имеет вид перевернутой параболы с минимумом в точке Q b /Q c =0,5.



Коэффициент сопротивления симметричного тройника (рис. 2а), расположенного на участке нагнетания (разделения) также можно вычислить по формуле :



где K 1 =0,3 - для сварных тройников.

При изменении отношения w B /w c от 0 до 1 коэффициент изменяется в пределах от 1 до 1,3 (F c =F b).

Анализируя структуру формул (5, 6) (также как (1) и (3)), можно убедиться, что снижение сечения (диаметра) боковых ответвлений (сечений Б) отрицательно сказывается на сопротивлении тройника.

Сопротивление потоку может быть снижено в 2-3 раза при использовании тройников-развилок (рис. 26, 2в).

Коэффициент сопротивления тройника-развилки при разделении потока (рис. 2б) можно вычислить по формулам :



При изменении отношения Q 2 /Q 1 от 0 до 1 коэффициент изменяется в пределах от 0,32 до 0,6.

Коэффициент сопротивления тройника-развилки при слиянии (рис. 2б) можно вычислить по формулам :



При изменении отношения Q 2 /Q 1 от 0 до 1 коэффициент изменяется в пределах от 0,33 до -0,4.

Симметричный тройник может быть выполнен с плавными отводами (рис. 2в), тогда его сопротивление может быть еще снижено.


Изготовление. Стандарты

Отраслевые стандарты энергетики предписывают для трубопроводов тепловых электростанций низкого давления (при рабочем давлении Р раб.<22 кгс/см 2 и температуре среды t<425 О С) использовать тройники сварные по ОСТ34-42-762

ОСТ34-42-765-85. Для более высоких параметров среды (Р ра б.<40 кгс/см 2) изготавливают тройники из углеродистых и кремнемарганцовистых сталей: штампованные по ОСТ108.720.01, ОСТ108.720.02-82; сварные по ОСТ108.104.01 - ОСТ108.104.03-82; с обжатием (с вытянутой горловиной) по ОСТ108.104.04, ОСТ108.104.05-82. Из хромомолибденованадиевых сталей изготавливают тройники: штампованные по ОСТ108.720.05, ОСТ108.720.06-82; сварные по ОСТ108.104.10 - ОСТ108.104.12-82; с обжатием (с вытянутой горловиной) по ОСТ108.104.13 - ОСТ108.104.15-82 для паропроводов высокого давления (с параметрами Р раб. до 255 кгс/см 2 и температурой t до 560 О С). Существуют соответствующие нормативы и для штуцеров.

Конструкция тройников, изготовленных по существующим (вышеперечисленным) стандартам, далеко не всегда оптимальна с точки зрения гидравлических потерь. Снижению коэффициента местного сопротивления способствует лишь форма штампованных тройников с вытянутой горловиной, где в боковом ответвлении предусмотрен радиус скругления по типу, показанному на рис. 1б и рис. 3в, а также с обжатием концов, когда диаметр основного трубопровода несколько меньше диаметра тройника (по типу, показанному на рис. 3б). Тройники-развилки, очевидно, выполняются по отдельному заказу по «заводским» стандартам. В РД 10-249-98 существует параграф, посвященный расчету на прочность тройников-развилок и штуцеров.

При проектировании и реконструкции сетей важно учитывать направление движения сред и возможные диапазоны изменения расходов в тройниках. В случае, если направление транспортируемой среды однозначно определено, целесообразно использовать наклонные штуцеры (боковые ответвления) и тройники-развилки. Тем не менее, остается проблема значимых гидравлических потерь в случае универсального тройника, который сочетает свойства приточного и вытяжного, в котором возможно как слияние, так и разделение потока в режимах работы, связанных со значительным изменением расходов. Вышеупомянутые качества характерны, например, для узлов переключения трубопроводов питательной воды или главных паропроводов на ТЭС с «перемычками».

При этом следует учитывать, что для трубопроводов пара и горячей воды конструкция и геометрические размеры сварных тройников из труб, а также штуцеров (труб, патрубков), ввариваемых на прямых участках трубопроводов, должны удовлетворять требованиям отраслевых стандартов, нормалей и технических условий. Другими словами для ответственных трубопроводов необходимо заказывать тройники, выполненные в соответствии с техническими условиями у сертифицированных производителей. На практике, в виду относительной дороговизны «заводских» тройников, врезку штуцера зачастую выполняют местные подрядные организации, используя отраслевые или заводские нормы.

В целом окончательное решение о способе врезки целесообразно принимать после сравнительного технико-экономического анализа. Если принято решение осуществлять врезку «своими силами», персоналу ИТР необходимо подготовить шаблон штуцера, произвести расчет на прочность (если это необходимо), контролировать качество врезки (не допускать «провалов» штуцера и «перекрытие» его сечения неправильным вырезом стенки в прямом участке). Внутренний стык между металлом штуцера и основного трубопровода целесообразно выполнить с закруглением (рис. 3в).

Существует ряд конструктивных решений для снижения гидравлических сопротивлений в стандартных тройниках и узлах переключения магистралей. Одно из самых простых - увеличение размеров самих тройников для снижения в них относительных скоростей среды (рис. 3а, 3б). При этом тройники необходимо комплектовать переходами, углы расширения (сужения) которых также целесообразно выбирать из ряда гидравлически оптимальных. В качестве универсального тройника со сниженными гидравлическими потерями можно также использовать тройник-развилку с перемычкой (рис. 3г). Использование тройников-развилок для узлов переключения магистралей также незначительно усложнит конструкцию узла, но положительно скажется на гидравлических потерях (рис. 3д, 3е).

Важно отметить, что при сравнительно близком расположении местных (L=(10-20)d) сопротивлений различного типа, имеет место явление интерференции местных сопротивлений. По данным некоторых исследователей , при максимальном сближении местных сопротивлений можно добиться снижения их суммы, в то время как на некотором расстоянии (L=(5-7)d), суммарное сопротивление имеет максимум (выше на 3-7%, чем простая сумма). Эффект снижения мог бы вызвать интерес у крупных производителей, готовых изготавливать и поставлять узлы переключения со сниженными местными сопротивлениями, но для достижения хорошего результата необходимо проведение прикладных лабораторных исследований.


Технико-экономическое обоснование

При принятии того или иного конструктивного решения важно уделить внимание экономической стороне проблемы. Как упоминалось выше, «заводские» тройники обычной конструкции, и тем более выполненные по специальному заказу (гидравлически оптимальные), обойдутся значительно дороже, чем врезка штуцера. При этом важно ориентировочно оценить выгоды в случае снижения гидравлических потерь в новом тройнике и срок его окупаемости.

Известно, что потери давления в станционных трубопроводах с обычными скоростями движения сред (для Re>2.10 5) можно оценить следующей формулой :

где р - потери давления, кгс/см 2 ; w - скорость среды, м/с; L - развернутая длина трубопровода, м; g - ускорение свободного падения, м/с 2 ; d - расчетный диаметр трубопровода, м; к - коэффициент сопротивления трения; ∑ἐ м – сумма коэффициентов местных сопротивлений; v - удельный объем среды, м 3 /кг

Зависимость (7) принято называть гидравлической характеристикой трубопровода.

Если учесть зависимость: w=10Gv/9nd 2 , где G- расход, т/ч.

Тогда (7) можно представить в виде:


Если существует возможность снизить местное сопротивление (тройника, штуцера, узла переключения), то, очевидно, формулу (9) можно представить в виде:

Здесь ∑ἐ м - разность коэффициентов местного сопротивления старого и нового узлов.

Допустим, что гидравлическая система «насос - трубопровод» работает в номинальном режиме (или в режиме, близком к номинальному). Тогда:

где Р н - номинальное давление (по расходной характеристике насоса/котла), кгс/см 2 ; G h - номинальный расход (по расходной характеристике насоса/котла), т/ч.

Если предположить, что после замены старых сопротивлений система «насос - трубопровод» сохранит работоспособность (ЫРн), то из (10), используя (12), можно определить новый расход (после снижения сопротивления):

Работу системы «насос-трубопровод», изменение ее характеристик можно наглядно представить на рис. 4.



Очевидно, что G 1 >G M . Если речь идет о главном паропроводе, транспортирующим пар из котла в турбину, то по разности расходов ЛG=G 1 -G н можно определить выигрыш в количестве теплоты (из отбора турбины) и/или в количестве вырабатываемой электрической энергии по режимным характеристикам данной турбины.

Сравнивая стоимость нового узла и количества теплоты (электроэнергии), можно ориентировочно оценить рентабельность его монтажа.


Пример расчета

Например, необходимо оценить рентабельность замены равнопроходного тройника главного паропровода на слиянии потоков (рис. 2а) тройником-развилкой с перемычкой по типу, указанному на рис. 3г. Потребитель пара - теплофикационная турбина ПО ТМЗ типа Т-100/120-130. Пар поступает по одной нитке паропровода (через тройник, сечения Б, С).

Имеем следующие исходные данные:

■ расчетный диаметр паропровода d=0,287 м;

■ номинальный расход пара G h =Q(3=Q^420 т/ч;

■ номинальное давление котла Р н =140 кгс/см 2 ;

■ удельный объем пара (при Р ра б=140 кгс/см 2 , t=560 О С) n=0,026 м 3 /кг.

Рассчитаем коэффициент сопротивления стандартного тройника на слиянии потоков (рис. 2а) по формуле (5) - ^ СБ1 =2.

Для расчета коэффициента сопротивления тройника-развилки с перемычкой предположим:


■ деление потоков в ветвях происходит в пропорции Q b /Q c «0,5;

■ суммарный коэффициент сопротивления равен сумме сопротивлений приточного тройника (с отводом 45 О, см. рис. 1а) и тройника-развилки при слиянии (рис. 2б), т.е. интерференцией пренебрегаем.


Используем формулы (11, 13) и получаем ожидаемое увеличение расхода на  G=G 1 -G н =0,789 т/ч.

По диаграмме режимов турбины Т-100/120-130 расходу 420 т/ч может соответствовать электрическая нагрузка - 100 МВт и тепловая нагрузка - 400 ГДж/ч . Зависимость между расходом и электрической нагрузкой близка к прямопропорциональной.

Выигрыш по электрической нагрузке может составить: P э =100AG/Q н =0,188 МВт.

Выигрыш по тепловой нагрузке может составить: T э =400AG/4,19Q н =0,179 Гкал/ч.

Цены на изделия из хромомолибденованадиевых сталей (на тройники-развилки 377x50) могут колебаться в широких пределах от 200 до 600 тыс. руб., следовательно, о сроке окупаемости можно судить лишь после тщательного исследования рынка на момент принятия решения.


1. В данной статье описаны различные типы тройников и штуцеров, даны краткие характеристики тройников, используемых в трубопроводах электростанций. Приведены формулы для определения коэффициентов гидравлических сопротивлений, показаны пути и способы их снижения.

2. Предложены перспективные конструкции тройников-развилок, узла переключения магистральных трубопроводов со сниженными коэффициентами местных сопротивлений.

3. Приведены формулы, пример и показана целесообразность технико-экономического анализа при выборе либо замене тройников, при реконструкции узлов переключения.


Литература

1. Идельчик И.Е. Справочник по гидравлическим сопротивлениям. М.: Машиностроение, 1992.

2. Никитина И.К. Справочник по трубопроводам тепловых электростанций. М.: Энергоатомиздат, 1983.

3. Справочник по расчетам гидравлических и вентиляционных систем / Под ред. А.С. Юрьева. С.-Пб.: АНО НПО «Мир и семья», 2001.

4. Рабинович Е.З. Гидравлика. М.: Недра, 1978.

5. Бененсон Е.И., Иоффе Л.С. Теплофикационные паровые турбины / Под ред. Д.П. Бузина. М: Энергоиздат, 1986.


Аэродинамический расчет воздуховодов начинают с вычерчивания аксонометрической схемы (М 1: 100), проставления номеров участков, их нагрузок L (м 3 /ч) и длин I (м). Определяют направление аэродинамического расчета - от наиболее удаленного и нагруженного участка до вентилятора . При сомнениях при определении направления рассчитывают все возможные варианты.

Расчет начинают с удаленного участка: определяют диаметр D (м) круглого или площадь F (м 2) поперечного сечения прямоугольного воздуховода:

Таблица. Требуемый часовой расход свежего воздуха, м 3 /ч (cfm)

По приложению Н из принимают ближайшие стандартные значения: D ст или (а х b) ст (м).

Фактическая скорость (м/с): или
Гидравлический радиус прямоугольных воздуховодов (м):

Критерий Рейнольдса: Re = 64100 x D ст x U факт (для прямоугольных воздуховодов D ст = D L).

Коэффициент гидравлического трения: λ = 0,3164 x Re - 0,25 при Re ≤ 60000, λ = 0,1266 x Re - 0,167 при Re Потери давления на расчетном участке (Па): где - сумма коэффициентов местных сопротивлений на участке воздуховодов.

Местные сопротивления на границе двух участков (тройники, крестовины) относят к участку с меньшим расходом. Коэффициенты местных сопротивлений даны в приложениях.

Схема приточной системы вентиляции, обслуживающей 3-этажное административное здание.

Таблица 1. Аэродинамический расчет

№ участков подача L, м 3 /ч длина L, м U ре к, м/с сечение а x b, м U ф, м/с D l , м Re λ Kmc потери на участке?р, па
решетка PP на выходе 0,2 x 0,4 3,1 - - - 1,8 10,4
1 720 4,2 4 0,2 x 0,25 4,0 0,222 56900 0,0205 0,48 8,4
2 1030 3,0 5 0,25 x 0,25 4,6 0,25 73700 0,0195 0,4 8,1
3 2130 2,7 6 0,4 x 0,25 5,92 0,308 116900 0,0180 0,48 13,4
4 3480 14,8 7 0,4 x 0,4 6,04 0,40 154900 0,0172 1,44 45,5
5 6830 1,2 8 0,5 x 0,5 7,6 0,50 234000 0,0159 0,2 8,3
6 10420 6,4 10 0,6 x 0,5 9,65 0,545 337000 0,0151 0,64 45,7
6a 10420 0,8 ю. ø 0,64 8,99 0,64 369000 0,0149 0 0,9
7 10420 3,2 5 0,53 x 1,06 5,15 0,707 234000 0,0312 x n 2,5 44,2
Суммарные потери: 185
Примечание. Для кирпичных каналов с абсолютной шероховатостью 4 мм и U ф = 6,15 м/с, поправочный коэффициент n = 1,94 (, табл. 22.12.).

Воздуховоды изготовлены из оцинкованной тонколистовой стали, толщина и размер которой соответствуют прил. Н из . Материал воздухозаборной шахты - кирпич. В качестве воздухораспределителей применены решетки регулируемые типа РР с возможными сечениями: 100 х 200; 200 х 200; 400 х 200 и 600 х 200 мм, коэффициентом затенения 0,8 и максимальной скоростью воздуха на выходе до 3 м/с.

Сопротивление приемного утепленного клапана с полностью открытыми лопастями 10 Па. Гидравлическое сопротивление калориферной установки 100 Па (по отдельному расчету). Сопротивление фильтра G-4 250 Па. Гидравлическое сопротивление глушителя 36 Па (по акустическому расчету). Исходя из архитектурных требований, проектируют воздуховоды прямоугольного сечения.
Сечения кирпичных каналов принимают по табл. 22.7 .

Коэффициенты местных сопротивлений.

Участок 1. Решетка РР на выходе сечением 200 x 400 мм (рассчитывают отдельно):
Динамическое давление:

KMC решетки (прил. 25.1) = 1,8.
Падение давления в решетке: Δр - рД x KMC = 5,8 x 1,8 = 10,4 Па.
Расчетное давление вентилятора р: Δр вент = 1,1 (Δр аэрод + Δр клап + Δр фильтр + Δр кал + Δр глуш)= 1,1 (185 + 10 + 250 + 100 + 36) = 639 Па.
Подача вентилятора: L вент = 1,1 х Lсист = 1,1 х 10420 = 11460 м 3 /ч.

Выбран радиальный вентилятор ВЦ4-75 № 6,3, исполнение 1: L = 11500 м 3 /ч; Δр вен = 640 Па (вентагрегат Е6.3.090 - 2а), диаметр ротора 0,9 х D пом, частота вращения 1435 мин-1, электродвигатель 4А10054; N = 3 кВт установлен на одной оси с вентилятором. Масса агрегата 176 кг.
Проверка мощности электродвигателя вентилятора (кВт):
По аэродинамической характеристике вентилятора n вент = 0,75.

Таблица 2. Определение местных сопротивлений

№ участков Вид местного сопротивления Эскиз Угол α, град. Отношение Обоснование КМС
F 0 /F 1 L 0 /L ст f прох /f ств
1 Диффузор 20 0,62 - - Табл. 25.1 0,09
Отвод 90 - - - Табл. 25.11 0,19
Тройник-проход - - 0,3 0,8 Прил. 25.8 0,2
Σ 0,48
2 Тройник-проход - - 0,48 0,63 Прил. 25.8 0,4
3 Тройник-ответвление - 0,63 0,61 - Прил. 25.9 0,48
4 2 отвода 250 x 400 90 - - - Прил. 25.11
Отвод 400 x 250 90 - - - Прил. 25.11 0,22
Тройник-проход - - 0,49 0,64 Табл. 25.8 0,4
Σ 1,44
5 Тройник-проход - - 0,34 0,83 Прил. 25.8 0,2
6 Диффузор после вентилятора h=0,6 1,53 - - Прил. 25.13 0,14
Отвод 600 x 500 90 - - - Прил. 25.11 0,5
Σ 0,64
6a Конфузор перед вентилятором D г =0,42 м Табл. 25.12 0
7 Колено 90 - - - Табл. 25.1 1,2
Решетка жалюзийная Табл. 25.1 1,3
Σ 1,44

Краснов Ю.С., "Системы вентиляции и кондиционирования. Рекомендации по проектированию для производственных и общественных зданий", глава 15. "Термокул"

Просмотров