Как доказать что числа взаимно простые. Взаимно простые числа

В этом статье мы расскажем о том, что такое взаимно простые числа. В первом пункте сформулируем определения для двух, трех и более взаимно простых чисел, приведем несколько примеров и покажем, в каких случаях два числа можно считать простыми по отношению друг к другу. После этого перейдем к формулировке основных свойств и их доказательствам. В последнем пункте мы поговорим о связанном понятии – попарно простых числах.

Yandex.RTB R-A-339285-1

Что такое взаимно простые числа

Взаимно простыми могут быть как два целых числа, так и их большее количество. Для начала введем определение для двух чисел, для чего нам понадобится понятие их наибольшего общего делителя. Если нужно, повторите материал, посвященный ему.

Определение 1

Взаимно простыми будут два таких числа a и b , наибольший общий делитель которых равен 1 , т.е. НОД (a , b) = 1 .

Из данного определения можно сделать вывод, что единственный положительный общий делитель у двух взаимно простых чисел будет равен 1 . Всего два таких числа имеют два общих делителя – единицу и минус единицу.

Какие можно привести примеры взаимно простых чисел? Например, такой парой будут 5 и 11 . Они имеют только один общий положительный делитель, равный 1 , что является подтверждением их взаимной простоты.

Если мы возьмем два простых числа, то по отношению друг к другу они будут взаимно простыми во всех случаях, однако такие взаимные отношения образуются также и между составными числами. Возможны случаи, когда одно число в паре взаимно простых является составным, а второе простым, или же составными являются они оба.

Это утверждение иллюстрирует следующий пример: составные числа - 9 и 8 образуют взаимно простую пару. Докажем это, вычислив их наибольший общий делитель. Для этого запишем все их делители (рекомендуем перечитать статью о нахождении делителей числа). У 8 это будут числа ± 1 , ± 2 , ± 4 , ± 8 , а у 9 – ± 1 , ± 3 , ± 9 . Выбираем из всех делителей тот, что будет общим и наибольшим – это единица. Следовательно, если НОД (8 , − 9) = 1 , то 8 и - 9 будут взаимно простыми по отношению друг к другу.

Взаимно простыми числами не являются 500 и 45 , поскольку у них есть еще один общий делитель – 5 (см. статью о признаках делимости на 5). Пять больше единицы и является положительным числом. Другой подобной парой могут быть - 201 и 3 , поскольку их оба можно разделить на 3 , на что указывает соответствующий признак делимости.

На практике довольно часто приходится определять взаимную простоту двух целых чисел. Выяснение этого можно свести к поиску наибольшего общего делителя и сравнению его с единицей. Также удобно пользоваться таблицей простых чисел, чтобы не производить лишних вычислений: если одно из заданных чисел есть в этой таблице, значит, оно делится только на единицу и само на себя. Разберем решение подобной задачи.

Пример 1

Условие: выясните, являются ли взаимно простыми числа 275 и 84 .

Решение

Оба числа явно имеют больше одного делителя, поэтому сразу назвать их взаимно простыми мы не можем.

Вычисляем наибольший общий делитель, используя алгоритм Евклида: 275 = 84 · 3 + 23 , 84 = 23 · 3 + 15 , 23 = 15 · 1 + 8 , 15 = 8 · 1 + 7 , 8 = 7 · 1 + 1 , 7 = 7 · 1 .

Ответ: поскольку НОД (84 , 275) = 1 , то данные числа будут взаимно простыми.

Как мы уже говорили раньше, определение таких чисел можно распространить и на случаи, когда у нас есть не два числа, а больше.

Определение 2

Взаимно простыми целые числа a 1 , a 2 , … , a k , k > 2 будут тогда, когда они имеют наибольший общий делитель, равный 1 .

Иными словами, если у нас есть набор некоторых чисел с наибольшим положительным делителем, большим 1 , то все эти числа не являются по отношению друг к другу взаимно обратными.

Возьмем несколько примеров. Так, целые числа − 99 , 17 и − 27 – взаимно простые. Любое количество простых чисел будет взаимно простым по отношению ко всем членам совокупности, как, например, в последовательности 2 , 3 , 11 , 19 , 151 , 293 и 667 . А вот числа 12 , − 9 , 900 и − 72 взаимно простыми не будут, потому что кроме единицы у них будет еще один положительный делитель, равный 3 . То же самое относится к числам 17 , 85 и 187: кроме единицы, их все можно разделить на 17 .

Обычно взаимная простота чисел не является очевидной с первого взгляда, этот факт нуждается в доказательстве. Чтобы выяснить, будут ли некоторые числа взаимно простыми, нужно найти их наибольший общий делитель и сделать вывод на основании его сравнения с единицей.

Пример 2

Условие: определите, являются ли числа 331 , 463 и 733 взаимно простыми.

Решение

Сверимся с таблицей простых чисел и определим, что все три этих числа в ней есть. Тогда их общим делителем может быть только единица.

Ответ: все эти числа будут взаимно простыми по отношению друг к другу.

Пример 3

Условие: приведите доказательство того, что числа − 14 , 105 , − 2 107 и − 91 не являются взаимно простыми.

Решение

Начнем с выявления их наибольшего общего делителя, после чего убедимся, что он не равен 1 . Поскольку у отрицательных чисел те же делители, что и у соответствующих положительных, то НОД (− 14 , 105 , 2 107 , − 91) = НОД (14 , 105 , 2 107 , 91) . Согласно правилам, которые мы привели в статье о нахождении наибольшего общего делителя, в данном случае НОД будет равен семи.

Ответ: семь больше единицы, значит, взаимно простыми эти числа не являются.

Основные свойства взаимно простых чисел

Такие числа имеют некоторые практически важные свойства. Перечислим их по порядку и докажем.

Определение 3

Если разделить целые числа a и b на число, соответствующее их наибольшему общему делителю, мы получим взаимно простые числа. Иначе говоря, a: НОД (a , b) и b: НОД (a , b) будут взаимно простыми.

Это свойство мы уже доказывали. Доказательство можно посмотреть в статье о свойствах наибольшего общего делителя. Благодаря ему мы можем определять пары взаимно простых чисел: достаточно лишь взять два любых целых числа и выполнить деление на НОД. В итоге мы должны получить взаимно простые числа.

Определение 4

Необходимым и достаточным условием взаимной простоты чисел a и b является существование таких целых чисел u 0 и v 0 , при которых равенство a · u 0 + b · v 0 = 1 будет верным.

Доказательство 1

Начнем с доказательства необходимости этого условия. Допустим, у нас есть два взаимно простых числа, обозначенных a и b . Тогда по определению этого понятия их наибольший общий делитель будет равен единице. Из свойств НОД нам известно, что для целых a и b существует соотношение Безу a · u 0 + b · v 0 = НОД (a , b) . Из него получим, что a · u 0 + b · v 0 = 1 . После этого нам надо доказать достаточность условия. Пусть равенство a · u 0 + b · v 0 = 1 будет верным, в таком случае, если НОД (a , b) делит и a , и b , то он будет делить и сумму a · u 0 + b · v 0 , и единицу соответственно (это можно утверждать, исходя из свойств делимости). А такое возможно только в том случае, если НОД (a , b) = 1 , что доказывает взаимную простоту a и b .

В самом деле, если a и b являются взаимно простыми, то согласно предыдущему свойству, будет верным равенство a · u 0 + b · v 0 = 1 . Умножаем обе его части на c и получаем, что a · c · u 0 + b · c · v 0 = c . Мы можем разделить первое слагаемое a · c · u 0 + b · c · v 0 на b , потому что это возможно для a · c , и второе слагаемое также делится на b , ведь один из множителей у нас равен b . Из этого заключаем, что всю сумму можно разделить на b , а поскольку эта сумма равна c , то c можно разделить на b .

Определение 5

Если два целых числа a и b являются взаимно простыми, то НОД (a · c , b) = НОД (c , b) .

Доказательство 2

Докажем, что НОД (a · c , b) будет делить НОД (c , b) , а после этого – что НОД (c , b) делит НОД (a · c , b) , что и будет доказательством верности равенства НОД (a · c , b) = НОД (c , b) .

Поскольку НОД (a · c , b) делит и a · c и b , а НОД (a · c , b) делит b , то он также будет делить и b · c . Значит, НОД (a · c , b) делит и a · c и b · c , следовательно, в силу свойств НОД он делит и НОД (a · c , b · c) , который будет равен c · НОД (a , b) = c . Следовательно, НОД (a · c , b) делит и b и c , следовательно, делит и НОД (c , b) .

Также можно сказать, что поскольку НОД (c , b) делит и c , и b , то он будет делить и c , и a · c . Значит, НОД (c , b) делит и a · c и b , следовательно, делит и НОД (a · c , b) .

Таким образом, НОД (a · c , b) и НОД (c , b) взаимно делят друг друга, значит, они являются равными.

Определение 6

Если числа из последовательности a 1 , a 2 , … , a k будут взаимно простыми по отношению к числам последовательности b 1 , b 2 , … , b m (при натуральных значениях k и m), то их произведения a 1 · a 2 · … · a k и b 1 · b 2 · … · b m также являются взаимно простыми, в частности, a 1 = a 2 = … = a k = a и b 1 = b 2 = … = b m = b , то a k и b m – взаимно простые.

Доказательство 3

Согласно предыдущему свойству, мы можем записать равенства следующего вида: НОД (a 1 · a 2 · … · a k , b m) = НОД (a 2 · … · a k , b m) = … = НОД (a k , b m) = 1 . Возможность последнего перехода обеспечивается тем, что a k и b m взаимно просты по условию. Значит, НОД (a 1 · a 2 · … · a k , b m) = 1 .

Обозначим a 1 · a 2 · … · a k = A и получим, что НОД (b 1 · b 2 · … · b m , a 1 · a 2 · … · a k) = НОД (b 1 · b 2 · … · b m , A) = НОД (b 2 · … · b · b m , A) = … = НОД (b m , A) = 1 . Это будет справедливым в силу последнего равенства из цепочки, построенной выше. Таким образом, у нас получилось равенство НОД (b 1 · b 2 · … · b m , a 1 · a 2 · … · a k) = 1 , с помощью которого можно доказать взаимную простоту произведений a 1 · a 2 · … · a k и b 1 · b 2 · … · b m

Это все свойства взаимно простых чисел, о которых бы мы хотели вам рассказать.

Понятие попарно простых чисел

Зная, что из себя представляют взаимно простые числа, мы можем сформулировать определение попарно простых чисел.

Определение 7

Попарно простые числа – это последовательность целых чисел a 1 , a 2 , … , a k , где каждое число будет взаимно простым по отношению к остальным.

Примером последовательности попарно простых чисел может быть 14 , 9 , 17 , и − 25 . Здесь все пары (14 и 9 , 14 и 17 , 14 и − 25 , 9 и 17 , 9 и − 25 , 17 и − 25) взаимно просты. Отметим, что условие взаимной простоты является обязательным для попарно простых чисел, но взаимно простые числа будут попарно простыми далеко не во всех случаях. Например, в последовательности 8 , 16 , 5 и 15 числа не являются таковыми, поскольку 8 и 16 не будут взаимно простыми.

Также следует остановиться на понятии совокупности некоторого количества простых чисел. Они всегда будут и взаимно, и попарно простыми. Примером может быть последовательность 71 , 443 , 857 , 991 . В случае с простыми числами понятия взаимной и попарной простоты будут совпадать.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Что такое взаимно простые числа?

Взаимно простые числа определение

Определение взаимно простых чисел:

Взаимно простые числа - это целые числа, у которых нет общих делителей, кроме единицы.

Взаимно простые числа примеры

Пример взаимно простых чисел:

У 2 и 3 нет иных общих делителей кроме единицы.

Ещё пример взаимно простых чисел:

У 3 и 7 нет иных общих делителей кроме едининицы.

Другой пример взаимно простых чисел:

У 11 и 13 нет иных общих делителей кроме едининицы.

Теперь мы можем ответить на вопрос, что значит взаимно простые числа.

Что значит взаимно простые числа?

Это целые числа, у которых нет общих делителей, кроме единицы.

Два взаимно простых числа

Каждая из этих пар есть два взаимно простых числа.

11 и 15
15 и 16
16 и 23

Общие делители взаимно простых чисел

Общие делители взаимно простых чисел - это только единица, что следует из определения взаимно простых чисел.

Наибольший общий делитель взаимно простых чисел

Наибольший общий делитель взаимно простых чисел - это единица, что следует из определения взаимно простых чисел.

Являются ли взаимно простыми числа?

Являются ли взаимно простыми числа 3 и 13? Да, ведь у них нет общих делителей, кроме единицы.

Являются ли взаимно простыми числа 3 и 12? Нет, ведь у них общими делителями являются 1 и 3. А по определению взаимно простых чисел общим делителем должна быть только единица.

Являются ли взаимно простыми числа 3 и 108? Нет, ведь у них общими делителями являются 1 и 3. А по определению взаимно простых чисел общим делителем должна быть только единица.

Являются ли взаимно простыми числа 108 и 5? Да, ведь у них нет общих делителей, кроме единицы.

Учебники математики порой сложны для восприятия. Сухой и четкий язык авторов не всегда доступен для понимания. Да и темы там всегда взаимосвязанные, взаимовытекающие. Для освоения одной темы приходится поднимать ряд предыдущих, а порой и перелистывать весь учебник. Сложно? Да. А давайте рискнем обойти эти сложности и попробуем найти к теме не совсем стандартный подход. Сделаем эдакий экскурс в страну чисел. Определение, однако, мы все-таки оставим прежним, ибо правила математики отменить нельзя. Итак, взаимно простые числа — числа натуральные, с общим делителем, равным единице. Это понятно? Вполне.

Для более наглядного примера давайте возьмем числа 6 и 13. И то, и другое — делимы на единицу (взаимно простые). А вот числа 12 и 14 — таковыми не могут являться, поскольку делятся не только на 1, но и на 2. Следующие числа — 21 и 47 тоже не подходят к категории "взаимно простые числа": их можно разделить не только на 1, но еще и на 7.

Обозначают взаимно простые числа так: (а , у) = 1.

Можно сказать даже проще: общий делитель (наибольший) здесь равен единице.
Для чего нам такие знания? Причин достаточно.

Взаимно включены в некоторые системы шифрования. Те, кто работает с шифрами Хилла или с системой подстановок Цезаря, понимают: без этих знаний — никуда. Если вы слышали о генераторах то вряд ли решитесь отрицать: взаимно простые числа используются и там.

Теперь поговорим о способах получения таких простые, как вы понимаете, могут иметь лишь два делителя: они делимы на самих себя и на единицу. Скажем, 11, 7, 5, 3 — числа простые, а вот 9 — нет, ведь это число уже делимо и на 9, и на 3, и на 1.

И если а — число простое, а у - из множества {1, 2, ... а - 1}, то тогда гарантированно (а , у ) = 1, или взаимно простые числа — а и у .

Это, скорее, даже не объяснение, а повторение или подведение итогов только что сказанного.

Получение простых чисел возможно однако для внушительных чисел (миллиардов, например) этот метод слишком долгий, но, в отличие от супер-формул, которые порой и ошибаются, более надежный.

Можно работать путем подбора у > а . Для этого у выбирается так, чтобы число на а не делилось. Для этого число простое умножается на число натуральное и прибавляется (или, напротив, вычитается) величина (допустим, р ), которая меньше а :

у = р а + k

Если, например, а = 71, р = 3, q=10, то, соответственно, у здесь будет равен 713. Возможен и другой подбор, со степенями.

Составные числа, в отличие от взаимно простых, делятся и на себя, и на 1, и на другие числа (тоже без остатка).

Другими словами, (кроме единицы) разбиты на составные и простые.

Простые числа — числа натуральные, не имеющие нетривиальных (отличных от самого числа и единицы) делителей. Особенно важна их роль в сегодняшней, современной, быстро развивающейся криптографии, благодаря которой считавшаяся ранее дисциплиной предельно отвлеченной, стала так востребована: алгоритмы защиты данных постоянно совершенствуются.

Самое большое простое число найдено доктором-офтальмологом Мартином Новаком, участвовавшим в проекте GIMPS (распределительные вычисления) вместе с другими энтузиастами, которых насчитывалось около 15 тыс. На расчеты ушло шесть долгих лет. Было задействовано два с половиной десятка компьютеров, находящихся в глазной клинике Новака. Результатом титанического труда и упорства явилось число 225964951-1, с записыванием в 7816230-десятичных знаках. Кстати, рекорд самого большого числа был поставлен за полгода до этого открытия. И знаков там было на полмиллиона меньше.

У гения, желающего назвать число, где продолжительность десятичной записи "перепрыгнет" десятимиллионную отметку, есть шанс получить не только всемирную славу, но и 100 000 долларов. Кстати, за число, преодолевшее миллионный рубеж знаков, Наян Хайратвал получил меньшую сумму (50 000 долларов).

Ключевые слова: теория чисел, лекции, взаємно прості числа.

Определение. Целые числа a и b называются взаимно простыми, если (a , b) = 1.

Два числа a и b являются взаимно простыми тогда и только тогда, когда найдутся целые числа u и v такие, что au + bv = 1.

Пусть X = { x n | n = 1, 2,...} - произвольная строго возрастающая последовательность натуральных чисел (или, если угодно, X - произвольное подмножество натуральных чисел, упорядоченное естественным образом). Обозначим через ξ(N; X) число членов последовательности X, не превосходящих N .

Определение. Число называется (верхней асимптотической) плотностью последовательности X = { x n | n = 1, 2,...} в множестве N .

Пример 1. Пусть x n = 2n , где n пробегает N , - последовательность всех четных чисел. Очевидно, что

Между прочим, это хорошо согласуется с нашими интуитивными представлениями о том, что четных чисел - половина.

Пример 2. Пусть x n =2 n , где n пробегает N , - геометрическая прогрессия. Интуитивно ясно, что таких чисел в натуральном ряду мало, ибо чем "дальше в лес" по натуральному ряду, тем реже встречается степень двойки. Понятие плотности подтверждает это ощущение: ξ (2 k ; { x n }) = k , и, легко проверить, что

Плотность - это вероятность наугад вытащить из натурального ряда число, принадлежащее заданной последовательности.

Аналогично определению плотности последовательности, можно дать определение плотности множества пар натуральных чисел. Пусть имеется произвольное множество Х упорядоченных пар натуральных чисел. Обозначим через ξ (N ; X) число пар из множества Х, каждая компонента которых не превосходит N . Полезно представить себе пары чисел из множества Х как координаты точек на координатной плоскости, тогда ξ (N ; X) есть просто число точек множества Х, попавших в квадрат {(x , y) | 0 < x ≤ N ; 0 < y ≤ N }.

Определение. Число

называется (верхней асимптотической) плотностью множества пар Х в множестве N 2 .

Пример 3. Пусть Х - множество всех пар натуральных чисел, у которых первая компонента строго больше второй. Множеству Х соответствуют точки первой четверти координатной плоскости, лежащие под биссектрисой y = x . Плотность такого множества легко подсчитать:

Пусть X - множество всех упорядоченных пар (u , v) натуральных чисел таких, что (u , v) = 1, т.е. множество всех пар взаимно простых чисел.

Теорема (Чезаро). Вероятность выбрать из N пару взаимно простых чисел равна 6/π 2 , точнее Доказательство. Предположим сразу, что существует вероятность p того, что случайно выбранные натуральные числа а и b взаимно просты. Пусть d ∈ N . Через P { S } обозначим, как обычно, вероятность события S . Рассуждаем: Р

Просмотров