Функции гиппокампа. Строение и роль гиппокампа


Гиппокамп (hippocampus) является областью в головном мозге человека, которая отвечает прежде всего за память, является частью лимбической системы, связан также с регуляцией эмоциональных ответов.

Гиппокамп по форме напоминает морского конька, располагается во внутренней части височной области мозга.

Гиппокамп является главным из отделов мозга по хранению долгосрочной информации.

Считается также, что гиппокамп отвечает за пространственную ориентацию.

В гиппокампе присутствует два основных вида активности: тета-режим и большая нерегулярная активность (БНА). Тета-режимы проявляются в основном в состоянии активности, а также в период быстрого сна. При тета-режимах электроэнцефалограмма показывает наличие больших волн с диапазоном частот от 6 до 9 Герц.

При этом основная группа нейронов показывает разреженную активность, т.е. в короткие промежутки времени большинство клеток неактивны, в то время, как небольшая часть нейронов проявляет повышенную активность. В данном режиме активная клетка обладает такой активностью от полу секунды до нескольких секунд.

БНА-режимы имеют место быть в период длинного сна, а также в период спокойного бодрствования (отдых, прием пищи).

Строение гиппокампа

У человека два гиппокампа - по одному на каждой стороне мозга. Оба гиппокампа связаны между собой комиссуральными нервными волокнами. Гиппокамп состоит из плотно уложенных клеток в ленточную структуру, которая тянется вдоль медиальной стенки нижнего рога бокового желудочка мозга в переднезаднем направлении.

Основная масса нервных клеток гиппокампа это пирамидные нейроны и полиморфные клетки. В зубчатой извилине основной тип клеток это зернистые клетки. Кроме клеток указанных типов в гиппокампе присутствуют ГАМКергические вставочные нейроны, которые неимение отношение к какому-либо клеточному слою. Эти клетки содержат различные нейропептиды, кальцийсвязывающий белок и конечно же нейромедиатор ГАМК.

Гиппокамп располагается под корой головного мозга и состоит из двух частей: зубчатая извилина и Аммонов рог. С анатомической стороны, гиппокамп является развитием коры головного мозга. Структуры, выстилающие границу коры мозга входят в лимбической систему. Гиппокамп анатомически связан с отделами головного мозга, отвечающими за эмоциональное поведение.

Гиппокамп содержит четыре основные зоны: CA1, CA2, CA3, CA4.

Энторинальная кора, расположенная в парагиппокампальной извилине считается частью гиппокампа, благодаря своим анатомическим соединениям.

Энторинальная кора тщательно взаимно связана с другими отделами головного мозга. Также известно, что медиальное септальное ядро, передний ядерный комплекс, объединяющее ядро таламуса, супрамаммилярное ядро гипоталамуса, ядра шва и голубое пятно в стволе головного мозга направляют аксоны в энторинальную кору.

Основной выходящий путь аксонов энторинальной коры исходит из больших пирамидальных клеток слоя II, который как бы перфорирует субикулум и плотно выдаётся в зернистые клетки в зубчатой извилине, верхние дендриты CA3 получают менее плотные проекции, а апикальные дендриты CA1 получают еще более редкую проекцию. Таким образом, проводящий путь использует энторинальную кору в качестве основного связующего элемента между гиппокампом и другими частями коры головного мозга.

Аксоны зубчатых зернистых клеток передают информацию из энторинальной коры на иглистых волосках, выходящих из проксимального апикального дендрита CA3 пирамидальных клеток. После чего аксоны CA3 выходят из глубокой части клеточного тела и образуют петли вверх - туда, где находятся апикальные дендриты, затем весь путь тянется назад в глубокие слои энторинальной коры в коллатерали Шаффера, завершая взаимное замыкание. Зона CA1 также посылает аксоны обратно в энторинальную кору, но в данном случае они более редкие, чем выходы CA3.

Следует отметить, что поток информации в гиппокампе из энторинальной коры значительно однонаправленный с сигналами которые распространяются через несколько плотной уложенных слой клеток, сначала к зубчатой извилине, после чего к слою CA3, затем к слою CA1, далее к субикулуму и после этого из гиппокампа к энторинальной коре, в основном обеспечивая пролегание CA3 аксонов. Каждый этот слой имеет сложную внутреннюю схему и обширные продольные соединения. Очень важный большой выходящий путь идёт в латеральную септальную зону и в маммилярное тело гипоталамуса.

Гиппокамп получает модулирующие входящие пути серотонина, дофамина и норадреналина, а также от ядер таламуса в слое CA1. Очень важная проекция идёт от медиальной септальной зоны, посылающая холинергические и габаергические волокна всем частям гиппокампа. Входы от септальной зоны имеют важнейшее значение в контроле физиологического состояния гиппокампа. Травмы и нарушения в этой зоне могут полностью прекратить тета-ритмы гиппокампа и создать серьёзные проблемы с памятью.

Также в гиппокампе существуют другие соединения, которые играют очень важную роль в его функциях .

На некотором расстоянии от выхода в энторинальную кору располагаются другие выходы, идущие в другие корковые области, в том числе и в префронтальную кору. Кортикальная область, прилегающая к гиппокампу носит название парагиппокампальной извилины или парагиппокамп. Парагиппокамп включает в себя энторинальную кору, перирхинальную кору, получившую своё название благодаря близкому расположению с обонятельной извилиной. Перирхинальная кора отвечает за визуальное распознавание сложных объектов.

Существуют доказательства того, что парагиппокамп выполняет отдельную от самого гиппокампа функцию по запоминанию, так как только повреждение обоих гиппокампов и парагиппокампа приводит к полной потери памяти.

Функции гиппокампа

Самые первые теории о роли гиппокампа в жизни человека заключались в том, что он отвечает за обоняние. Но проведенные анатомические исследования поставили эту теорию под сомнение. Дело в том, что исследования не нашли прямой связи гиппокампа с обонятельной луковицей. Но все же дальнейшие исследования показали, что обонятельная луковица имеет некоторые проекции в вентральную часть энторинальной коры, а слой CA1 в вентральной части гиппокампа посылает аксоны в основную обонятельную луковицу, переднее обонятельное ядро и в первичную обонятельную кору мозга.

По прежнему не исключается определенная роль гиппокампа в обонятельных реакциях, а именно в запоминании запахов, но многие специалисты продолжают считать, что основная роль гиппокампа это обонятельная функция.

Следующая теория, которая на данный момент является основной говорит о том, что основная функция гиппокампа это формирование памяти. Эта теория многократно была доказана в ходе различных наблюдений за людьми, которые были подвержены хирургическому вмешательству в гиппокамп, либо стали жертвами несчастных случаев или болезней, так или иначе затронувших гиппокамп. Во всех случаях наблюдалась стойкая потеря памяти.

Известный пример этому - пациент Генри Молисон, которому была проведена операция по удалению части гиппокампа с целью избавления от эпилептических припадков. После этой операции Генри стал страдать ретроградной амнезией. Он просто перестал запоминать события, происходящие после операции, но отлично помнил свое детство и все, что происходило до операции.

Нейробиологи и психологи единогласно соглашаются с тем, что гиппокамп играет важную роль в формировании новых воспоминаний (эпизодическая или автобиографическая память). Некоторые исследователи расценивают гиппокамп как часть системы памяти височной доли, ответственной за общую декларативную память (воспоминания, которые могут быть явно выражены словами — включающие например, память для фактов в дополнении к эпизодической памяти).

У каждого человека гиппокамп имеет двойную структуру - он расположен в обоих полушариях мозга. При повреждении например, гиппокампа в одном полушарии, мозг может сохранять почти нормальную функцию памяти.

Но при повреждении обоих частей гиппокампа возникают серьезные проблемы с новыми запоминаниями. При это более старые события человек прекрасно помнит, что говорит о том, что со временем часть памяти переходит из гиппокампа в другие отделы мозга.

Следует при этом отметить, что повреждение гиппокампа не приводит к утрачиванию возможностей к осваиванию некоторых навыков, например игра на музыкальном инструменте. Это говорит о том, что такая память зависит от других отделов мозга, а не только от гиппокампа.

Проведенные многолетние исследования кроме того показали, что гиппокамп играет важную роль в пространственной ориентации. Так известно, что в гиппокампе есть области нейронов, под названием пространственные нейроны, которые чувствительны к определенным пространственным местам. Гиппокамп обеспечивает пространственную ориентацию и запоминание определенных мест в пространстве.

Патологии гиппокампа

Не только такие возрастные патологии, как болезнь Альцгеймера (для которых разрушение гиппокампа является одним из ранних признаков заболевания) оказывают серьезное воздействие на многие виды восприятия, но даже обычное старение связано с постепенным снижением некоторых видов памяти, в том числе эпизодической и краткосрочной памяти. Так как гиппокамп играет важную роль в формировании памяти, ученые связывают возрастные расстройства памяти с физическим ухудшением состояния гиппокампа.

Первоначальные исследования обнаруживали значительную потерю нейронов в гиппокампе у пожилых людей, но новые исследования показали, что такие потери минимальны. Другие исследования показывали, что у пожилых людей происходит значительное уменьшение гиппокампа, но вновь проведенные аналогичные исследования такой тенденции не нашли.

Стресс, особенно хронический, может приводить к атрофии некоторых дендритов в гиппокампе. Это связано с тем, что в гиппокампе содержится большое количество глюкокортикоидных рецепторов. Из-за постоянного стресса стероиды, обусловленные им влияют на гиппокамп несколькими способами: снижают возбудимость отдельных нейронов гиппокампа, ингибируют процесс нейрогенеза в зубчатой извилине и вызывают атрофию дендритов в пирамидальных клетках зоны CA3.

Проведенные исследования показали, что у людей, которые переживали длительный стресс атрофия гиппокампа была значительно выше других областей мозга. Такие негативные процессы могут приводить к депрессии и даже к шизофрении. Атрофия гиппокампа наблюдалась у пациентов с синдромом Кушинга (высокий уровень кортизола в крови).

Эпилепсия часто связывается с гиппокампом. При эпилептических припадках часто наблюдается склероз отдельных областей гиппокампа.

Шизофрения наблюдается у людей с аномально маленьким гиппокампом. Но до настоящего времени точная связь шизофрении с гиппокампом не установлена. В результате внезапного застоя крови в областях мозга может возникать острая амнезия, вызванная ишемией в структурах гиппокампа.

Гиппокамп головного мозга, назван так потому, что его форма отдаленно напоминает форму морского конька, отвечает за кодирование долговременных воспоминаний и помогает в пространственной навигации. Это одна из филогенетически старейших частей мозга, и первая часть выбрана искусственно воспроизведенной в качестве протеза мозга. Известно, что гиппокамп связан с консолидацией эпизодических воспоминаний, которые являются воспоминаниями о пережитых личностью событиях и связанных с ними эмоциях. В отличие от семантических воспоминаний об абстрактных фактах и их ассоциациях, эпизодические воспоминания могут быть представлены в виде историй. Повреждение гиппокампа приводит к неспособности формировать новые долговременные эпизодические воспоминания, хотя новые процедурные воспоминания, такие как моторные последовательности для повседневных задач, все еще могут быть изучены.

При шизофрении и некоторых типах тяжелой депрессии гиппокамп сжимается. Гиппокамп также известен как одна из наиболее структурированных и изученных частей мозга, поэтому он был выбран для эмуляции протеза. Хотя точные нейронные алгоритмы не известны, они были смоделированы полностью. Поскольку гиппокамп очень старый, он был значительно оптимизирован эволюцией и в основном одинаков для всех видов млекопитающих. Вот почему удалось спроектировать протез гиппокампа с помощью исчерпывающего исследования гиппокампа крысы, суспендированного в спинномозговой жидкости.

Для навигации гиппокамп содержит «клетки места», которые активируются в зависимости от предполагаемого местоположения животного. Можно привести веские аргументы в пользу того, что эти клетки существуют в гиппокампе, поскольку необходимо использовать память для определения текущего местоположения по более фундаментальным переменным, таким как ориентация и скорость. Активация этих мест наблюдалась у людей, путешествующих по городам виртуальной реальности. Неповрежденный гиппокамп требуется для многих задач пространственной навигации. Первоначально гиппокамп был неправильно связан с обонянием, которое фактически обрабатывается обонятельной корой.

Какова роль гиппокампа головного мозга?

Гиппокамп - это область мозга только под медиальными височными долями и по обе стороны от мозга выше ушей. По форме она похожа на морского конька.

Гиппокамп головного мозга помогает нам развить новые воспоминания. Иногда его рассматривают как шлюз для воспоминаний, как будто воспоминания должны проходить через гиппокамп, чтобы можно было хранить их в долгосрочном банке памяти.

Некоторые исследования также показали, что гиппокамп важен не только для формирования новых воспоминаний, но и для извлечения старых воспоминаний.

Интересно, что гиппокамп на левой стороне часто имеет большую функцию в памяти и языке, чем тот, что находится на правой стороне.

Как болезнь Альцгеймера влияет на гиппокамп головного мозга?

Исследование показало, что одной из первых областей в мозге, пораженной , является гиппокамп. Ученые коррелировали атрофию (усадку) областей гиппокампа с наличием болезни Альцгеймера. Атрофия в этой области мозга помогает объяснить, почему одним из ранних симптомов болезни Альцгеймера часто является нарушение памяти, особенно формирование новых воспоминаний.

Атрофия гиппокампа также коррелирует с наличием белка тау, который накапливается по мере прогрессирования болезни Альцгеймера.

Мягкие когнитивные нарушения и гиппокамп

Таким образом, размер и объем гиппокампа явно зависит от болезни Альцгеймера.

Но, что относительно мягкого когнитивного нарушения, условие, которое иногда, но не всегда, прогрессирует с болезнью Альцгеймера?

Исследования показали, что атрофия гиппокампа также коррелирует со слабым когнитивным нарушением. На самом деле, размер гиппокампа и скорость его усадки, как было показано, позволяют прогнозировать, прогрессирует ли MCI до болезни Альцгеймера или нет.

Меньший объем гиппокампа и более высокая скорость или усадка коррелируют с развитием деменции.

Объем гиппокампа может различаться между различными типами слабоумия?

В нескольких исследованиях был измерен объем гиппокампа и проанализировано, как он относится к другим типам деменции. Одна из возможностей заключалась в том, что врачи могли использовать степень атрофии в области гиппокампа, чтобы четко определить, какой тип деменции присутствует.

Например, если болезнь Альцгеймера была единственным типом деменции, которая существенно повлияла на размер гиппокампа, это могло бы использоваться для положительной диагностики болезни Альцгеймера. Тем не менее, многочисленные исследования показали, что эта мера часто не помогает выявить большинство типов деменции.

Второе исследование показало, что уменьшение размера гиппокампа также коррелирует с лобно-височной деменцией.

Однако ученые обнаружили существенную разницу при сравнении деменции тела Леви с болезнью Альцгеймера. Леви деменция показывает гораздо меньшую атрофию областей гиппокампа в головном мозге, которая также совпадает с менее значительным воздействием на память, особенно на ранних стадиях деменции Леви.

Можете ли вы предотвратить ваш гиппокамп от сокращения?

Пластичность (термин для способности мозга расти и изменяться с течением времени) гиппокампа неоднократно демонстрировалась в исследованиях. Исследования показали, что, хотя гиппокамп имеет тенденцию атрофироваться по мере старения, как физические упражнения, так и когнитивная стимуляция (умственное упражнение) могут замедлять эту усадку, а иногда и даже отменять ее.



Склероз гиппокампа – это одна из форм эпилепсии, причиной которой является патология отделов лимбической системы головного мозга. Основным генератором эпилептической активности считается глиоз в сочетании с атрофией кортикальной пластинки подлежащего белого вещества. Для диагностики заболевания неврологи Юсуповской больницы применяют современные методы инструментального исследования, выполняют лабораторные анализы и малоинвазивные диагностические процедуры.

Склероз гиппокампа сопровождается потерей нейронов и рубцеванием самой глубокой части височной доли. Часто обусловлено серьезными травмами головного мозга. Бывает левосторонним и правосторонним. Повреждение головного мозга вследствие травмы, новообразования, инфекции, недостатка кислорода или неконтролируемых спонтанных припадков приводит к образованию рубцовой ткани гиппокампа. Он начинает атрофироваться, нейроны отмирают и формируют рубцовую ткань.

На основании структурных изменений выделяют два основных вида эпилепсии височной доли:

  • с наличием объёмного процесса (опухоли, врождённой патологии, аневризмы кровеносного сосуда, кровоизлияния), затрагивающего лимбическую систему;
  • без наличия четко верифицированных объёмных изменений в области медиальной височной доли.

Причины двухстороннего склероза гиппокампа

Известны следующие причины склероза гиппокампа:

  • наследственная предрасположенность;
  • гипоксия мозговых тканей;
  • травмы мозга;
  • инфекции.

Сегодня основными считаются следующие теории развития склероза гиппокампа:

  • влияние фебрильных судорог, приводящих к регионарным нарушениям метаболизма и отёку коры височной доли. Происходит гибель нейронов, развивается локальный глиоз и атрофия, вследствие чего уменьшается объём гиппокампа, реактивное расширение борозды и нижнего рога бокового желудочка.
  • острые нарушения кровообращения в бассейне конечных и боковых ветвей задней мозговой артерии вызывают базальную ишемию височной доли, происходит вторичное диапедезное пропотевание, гибель нейронов, глиоз и атрофия.
  • нарушение развития височной доли во время эмбриогенеза.

Симптомы склероза гиппокампа

Склероз гиппокампа обычно приводит к очаговой эпилепсии. Эпилептические припадки появляются в группах или по отдельности. Они бывают комплексными, начинающимися со странных неописуемых ощущений, галлюцинаций или иллюзий с последующим оцепенением взгляда, пищевыми и ротаторными автоматизмами. Продолжаются около двух минут. При прогрессировании могут отмечаться генерализованные тонико-клонические судороги.

Приступы при склерозе гиппокампа могут сопровождаться различными симптомами:

  • изменением поведения;
  • потерей памяти;
  • головными болями;
  • повышенной тревожностью;
  • проблемами со сном;
  • паническими атаками.

У пациентов развивается нарушение когнитивных способностей (памяти, мышления, способности сконцентрироваться). Припадки, вследствие которых нарушается деятельность мозга, могут приводить к внезапной потере сознания, а также к вегетативной сердечной дисфункции. У пациентов с левосторонним склерозом гиппокампа более серьёзная парасимпатическая дисфункция по сравнению с пациентами, страдающими правосторонним мезиальным склерозом.

Приступы эпилепсии сопровождаются слуховыми или вестибулярными галлюцинациями, отрыжкой или вегетативными проявлениями, парестезиями и односторонними подергиваниями лица. Пациенты отмечают трудность обучения, нарушения памяти. Они конфликтны, эмоционально лабильны, обладают повышенным чувством долга.

Для диагностики заболевания врачи Юсуповской больницы применяют следующие методы обследования:

  • нейрорадиологическую диагностику;
  • компьютерную томографию;
  • ядерно-магниторезонансную спектроскопию;
  • ангиографию;
  • электроэнцефалографию.

Исследование выполняют на современной аппаратуре ведущих мировых производителей.

Лечение склероза гиппокампа

Для уменьшения симптомов заболевания неврологи Юсуповской больницы назначают противоэпилептические препараты. Средством первого выбора является Карбамазепин. К препаратам второго выбора относятся Вальпроат, Дифенин и Гексамидин. После лечения у части пациентов прекращаются приступы, наступает продолжительная ремиссия.

При устойчивости к проводимой терапии и прогрессировании склероза гиппокампа хирургическое лечение проводится в клиниках-партнёрах. Оно заключается в удалении височной доли мозга (лобэктомии). После операции в 70-95% случаев уменьшается количество приступов. Если вы столкнулись с проблемой склероза гиппокампа и желаете получить квалифицированную специализированную медицинскую помощь, позвоните по телефону. Вас запишут на консультацию невролога Юсуповской больницы.

Список литературы

  • МКБ-10 (Международная классификация болезней)
  • Юсуповская больница
  • Гусев Е.И., Демина Т.Л. Рассеянный склероз // Consilium Medicum: 2000. - № 2.
  • Джереми Тейлор. Здоровье по Дарвину: Почему мы болеем и как это связано с эволюцией = Jeremy Taylor “Body by Darwin: How Evolution Shapes Our Health and Transforms Medicine”. - М.: Альпина Паблишер, 2016. - 333 p.
  • A.Н.Бойко, О.О.Фаворова // Молекуляр. биология. 1995. - Т.29, №4. -С.727-749.

Наши специалисты

Цены на диагностику причин склероза гиппокампа

*Информация на сайте носит исключительно ознакомительный характер. Все материалы и цены, размещенные на сайте, не являются публичной офертой, определяемой положениями ст. 437 ГК РФ. Для получения точной информации обратитесь к сотрудникам клиники или посетите нашу клинику. Перечень оказываемых платных услуг указан в прайсе Юсуповской больницы.

*Информация на сайте носит исключительно ознакомительный характер. Все материалы и цены, размещенные на сайте, не являются публичной офертой, определяемой положениями ст. 437 ГК РФ. Для получения точной информации обратитесь к сотрудникам клиники или посетите нашу клинику.

ГИППОКАМП (hippocampus ; греч, hippokampos морское чудовище с телом коня и рыбьим хвостом; син.: аммонов рог, cornu Ammonis ) - парное образование - часть старой коры большого мозга; располагается на медиальной стенке нижних рогов боковых желудочков. Г. является центральной структурой лимбической системы (см.).

Вопрос о функциях Г. весьма сложен и до конца не решен. Прежние представления об участии Г. в функции обоняния как части «обонятельного мозга» (rhinencephalon) отвергнуты. На основании последствий удаления и стимуляции Г. у животных были высказаны предположения, что Г. участвует в организации ориентировочного рефлекса и внимания, регуляции вегетативных реакций, мотиваций (см.) и эмоций (см.), управлении произвольными движениями, механизмах памяти (см.) и обучения. Вместе с тем у животных после удаления Г. сохраняются выработанные до разрушения Г. условные связи и возможность выработки новых простых условных рефлексов. Однако формирование более сложных форм поведения (цепные, отставленные условные рефлексы, условные рефлексы на время, сложные дифференцировки, лабиринтные навыки) резко затрудняется. Особенно страдают формы поведения, связанные с необходимостью активного торможения - угасание ориентировочного рефлекса, неподкрепляемых условных рефлексов. Переделка ранее выработанных систем условных связей становится невозможной. В целом поведение становится значительно менее гибким, стереотипным, трудно перестраивающимся в соответствии с меняющимися условиями окружающей среды.

При стимуляции Г. электрическим током с физиологически адекватной частотой и силой он остается так наз. немой структурой. Интенсивности тока, которые при действии на гипоталамус вызывают развернутые комплексы соматических и висцеральных реакций, в Г. не вызывают никаких внешних эффектов, кроме реакции «успокоения» животного. При повышении частоты и силы тока, раздражающего Г., можно получить широкий спектр различных соматических и вегетативных проявлений, что, по-видимому, является следствием распространения судорожных разрядов по системе структур, связанных с Г. или лежащих вблизи от него, а также патол, состояния самого Г. Установлено, что Г. имеет наиболее низкий порог возникновения эпилептических разрядов в электрической активности, хотя внешние проявления развернутых судорожных припадков с клонической и тонической фазами возникают лишь при значительном увеличении параметров электрической стимуляции. Нанесение умеренной (не вызывающей двигательных судорог) стимуляции Г. сразу после выработки условного рефлекса приводит к исчезновению следов обучения. Аналогичный эффект дает введение в Г. ряда фармакол, веществ, в частности холинолитиков.

Т. о., наиболее вероятной функцией Г. является участие в регистрации новой информации. При этом уже сформировавшиеся следы памяти не хранятся в Г., но запись новых следов существенно зависит от его нормального функционирования. Ряд исследователей полагает, что Г. осуществляет сравнение вновь поступающей информации с уже имеющимися следами, на основании чего происходит выявление сигналов, подлежащих записи, и обеспечиваются условия, необходимые для формирования долговременной памяти.

В филогенезе истинный, относительно дифференцированный Г. впервые появляется у рептилий. Первоначально Г. располагается на медиодорсальной поверхности полушарий, но при последующем развитии неокортекса и его комиссуры (мозолистого тела Г.) оказывается оттесненным в глубь полушария. Часть Г. подвергается редукции, превращаясь в рудимент Г. (indusium griseum). У грызунов и хищных Г. занимает дорсовентральное положение и соответственно делится на дорсальный и вентральный отделы. При дальнейшем росте неокортекса дорсальная часть Г. редуцируется. Однако сохраняющаяся часть Г. является прогрессивно развивающейся структурой. В ходе эволюции происходит качественная дифференцировка и количественный рост числа нервных элементов и волокон Г. и непосредственно связанных с ним структур (в сравнении с ядрами таламуса и гипоталамуса). Наибольшее увеличение числа клеточных элементов Г. (в 5 раз) произошло у человека. У человека Г. занимает положение в глубине височной доли, где он образует медиальную стенку нижних рогов боковых (латеральных) желудочков (рис. 1). Развитие г. идет в тесной связи с ростом неокортекса (новой коры), и на каждом этапе филогенетического развития Г. получает проекции от высших для данного уровня эволюции областей коры» в частности у приматов и человека связи идут от лобных долей и нижнетеменной дольки.

Эмбриология

Эмбриол, исследование показывает, что основные структурные черты Г. выявляются довольно рано (у кролика - к концу 4-й нед., а у человека - к 4-му мес. внутриутробного развития). Однако основная масса нейронов Г. и особенно зубчатой фасции формируется постнатально. У крысы выход и пролиферация нейробластов в Г. продолжаются в течение двух недель постнатального развития, а в зубчатой фасции этот процесс не заканчивается м в 3 недели, когда в неокортексе формирование клеточных слоев уже завершено. Окончательная дифференциация клеточных элементов и прекращение роста Г. у грызунов происходит одновременно с неокортексом, в 40 дней. У человека наиболее интенсивное нарастание массы волокон свода Г., составленного аксонами его клеток, происходит в 3-7 лет, но увеличение идет и после 12 лет.

Морфология

Г. животных и человека входит в состав более обширной области - гиппокамповой формации. К ней относятся: энторинальная область (area entorhinalis), образующая парагиппокамповую извилину приматов (gyrus parahippocampalis), ряд сложно организованных переходных областей (parasubiculum, presubiculum и subiculum), а также зубчатая фасция (fascia dentata; ее свободная часть, обращенная в полость желудочка, образует gyrus dentatus). Энторинальная область у животных (поле 28) имеет сложную шестислойную структуру и рассматривается как переходная область между неокортексом и более примитивно организованным палеокортексом (древняя кора) грушевидной доли (gyrus piriformis). Она делится на медиальную часть, наиболее характерной особенностью к-рой является наличие крупных клеток во II слое, и латеральную, где клетки II слоя малы. В parasubiculum (поле 49) клеточные слои, представленные в энторинальной области, расширяются и сливаются. Граница с presubiculum (поле 27) является очень резкой, здесь исчезают пирамидальные нейроциты (пирамидные нейроны), которые сменяются зерновидными нейроцитами (зернистыми клетками). Между para- и presubiculum вклинивается небольшая дополнительная зона (поле 29 е, area retrosplenialis e). В subiculum вновь появляются крупные, рыхло расположенные пирамидальные нейроциты, которые при переходе к Г. собираются в узкий компактный слой.

По гистол, критериям Г. делится на ряд полей. С. Рамон-и-Кахаль делил Г. на два отдела: regio superior (прилежит к subiculum) и regio inferior (прилежит к fimbria hippocampi). Эта классификация применяется преимущественно в нейрохим. исследованиях. Розе (М. Rose) и И. Н. Филимонов делят Г. на пять полей (hi-h5, начиная от subiculum). Наиболее часто (рис. 2) употребляется деление Г, на четыре поля (CA1-СА4), введенное Лоренте де Но (R. Lorente de No). Поле CA1(h1) в клин, исследованиях иногда называют сектором Зоммера, а остальные поля - резистентным сектором. Правильность деления Г. на поля по гистол, критериям подтверждается различием афферентных и эфферентных связей, биохим, и физиол, характеристик и различной чувствительностью к ряду фармакол, веществ и патол, факторов. Так, в поле CA1 в первую очередь обнаруживаются патол. изменения при аноксии, а также при болезни Альцгеймера (см. Альцгеймера болезнь). Другие поля вместе с зубчатой фасцией дегенерируют при амавротической идиотии (см.), хотя сектор Зоммера остается почти интактным.

Основным клеточным элементом Г. являются крупные пирамидальные нейроциты, тела которых образуют единый плотный слой. Отростки этих клеток строго ориентированы перпендикулярно к продольной оси Г. Вследствие этого в Г. четко выделяются следующие слои, соответствующие различным уровням ветвления их дендритной системы (а не расположению разных типов клеток, как в неокортексе): alveus, содержащий в основном миелинизированные аксоны пирамид (пирамидальных нейроцитов); stratum oriens, где находятся ветвящиеся базальные дендриты; stratum pyramidale, содержащий тела пирамидальных нейроцитов; stratum radiatum, где проходят неветвящиеся стволы апикальных дендритов; stratum molecularelacunosum - область претерминальных и терминальных ветвлений апикальных дендритов. В regio inferior выделяется дополнительный слой - stratum lucidum, где на проксимальных сегментах апикальных дендритов заканчиваются аксоны зубчатой фасции. Остальные афферентные волокна, входящие в Г., также заканчиваются на определенных уровнях дендритов пирамидных клеток (пирамидальных Нейроцитов), в результате чего синапсы одного происхождения концентрируются в узких зонах.

Прилежащая к Г. зубчатая фасция у животных состоит из плотного слоя зернистых клеток (зерновидных нейроцитов). Их аксоны (мшистые волокна) заканчиваются гигантскими синапсами на пирамидальных клетках полей СА3-СА4, не выходя за пределы своей стороны. Т. о., зубчатая фасция, к к-рой подходят афференты (в основном от энторинальной коры), является внутренней релейной структурой гиппокамповой формации. В зубчатой фасции выделяют 3 слоя: stratum moleculare, содержащий дендриты зерновидных нейроцитов; stratum granulosum, содержащий их тела, и stratum polymorphe, где находятся полиморфные клетки и проходят аксоны зерновидных клеток.

Аксоны пирамидальных нейроцитов Г. выходят из него, образуя бахромку (fimbria hippocampi) и дорсальный свод (fornix dorsalis). В составе бахромки проходят комиссуральные волокна Г., образующие вентральную комиссуру Г. (psalterium ventrale, commissura fornicis, commissura hippocampi, давидова лира). Эфферентные нисходящие волокна Г. образуют компактный пучок - посткомиссуральный свод (fornix postcommissuralis) и более диффузный прекомиссуральный свод (fornix precommissuralis). Составляющие их волокна частично переключаются в ядрах перегородки (septum, у человека - septum pellucidum). Посткомиссуральный свод в основном заканчивается в медиальных ядрах сосцевидных, или мамиллярных, тел (corpora mamillaria). Последующие звенья этой системы [мамиллоталамический тракт - передние ядра зрительного бугра (таламуса) - поясной пучок - поясная и энторинальная кора] образуют основной лимбический круг, или так наз. круг Пейпса. Остальные нисходящие волокна Г., частично переключаясь в латеральной преоптической области и латеральном гипоталамусе, идут к неспецифическим (ретикулярным) структурам среднего мозга. Афферентные связи к Г. восходят от этих же отделов мозга гл. обр. в составе медиального переднемозгового пучка. Перед вступлением в Г. большинство этих волокон переключается на медиальном ядре перегородки (nucleus medialis septi). Вторым источником афферентных связей является энторинальная область коры.

Физиология

Рис. 3. Электроэнцефалограмма (ЭЭГ) различных полей гиппокампа у кролика: при первых применениях звукового раздражителя (тон) нерегулярные высокоамплитудные волны, регистрируемые в гиппокампе, сменяются регулярным низкоамплитудным синусоидальным ритмом с частотой 3-6 гц («тэта-ритм»); при повторении раздражителя реакция угасает: 1-отметка действия раздражителя; 2-5-ЭЭГ полей CA1, CA2, CA3, СА4 гиппокампа; I-ЭЭГ при первом применении звукового раздражителя; II-ЭЭГ при пятом применении звукового раздражителя; III-ЭЭГ при пятнадцатом применении звукового раздражителя.

При записи суммарной электрической активности Г. у животных в состоянии покоя регистрируются нерегулярные высоко-амплитудные волны, которые при действии сенсорных раздражителей сменяются особым регулярным синусоидальным ритмом с частотой 3-6 гц (тэта-ритм). Этот ритм наиболее четко выражен у низших млекопитающих (грызунов). На более высоких ступенях эволюции выраженность тэта-ритма в Г. снижается, но и у приматов его можно выделить методом частотного анализа. Тэта-ритм можно вызвать электрической стимуляцией ретикулярной формации среднего мозга, а также гипоталамуса. Постепенное повышение частоты или силы стимуляции сначала вызывает нарастание частоты тэта-ритма (до 8-10 гц), а затем приводит к десинхронизации активности Г. Появление тэта-ритма в Г. зависит от ритмических залповых разрядов клеток медиального ядра перегородки (пейсмекера тэта-ритма). Тэта-ритм в Г. возникает как при действии любых новых сенсорных раздражителей, так и при выработке различных условных связей (независимо от качества подкрепления и характера ответной реакции). Угасание ориентировочного рефлекса и автоматизации условных связей сопровождается снижением частоты, ограничением и подавлением тэта-ритма (рис. 3). По-видимому, тэта-ритм представляет собой особое проявление общей реакции активации, организуемой через восходящую ретикулярную формацию й отражающей повышение функционального состояния мозга, необходимого для анализа новой информации и выработки новых условных связей.

Регистрация активности одиночных нейронов Г. выявляет высокую реактивность пирамидальных нейроцитов полей СА3-СА4 к различным сенсорным раздражителям. На все раздражители эти клетки отвечают длительными тоническими реакциями. При повторных раздражениях ответные реакции нейронов уменьшаются и даже прекращаются, но вновь восстанавливаются при изменении параметров раздражителя. Клетки поля САХ более избирательны в отношении действующих раздражителей, и их ответы на различные раздражители различны. Электрическая стимуляция систем связей Г. при регистрации активности его нейронов выявляет особенности возбуждения этой структуры. При низкочастотной (до 8 гц) и высокочастотной (св. 30-40 гц) стимуляции нейроны Г. преимущественно тормозятся. Активное возбуждение нейронов Г. возникает лишь в узком частотном диапазоне стимуляции (приблизительно 8-30 гц). За этими пределами стимуляция Г. может быть эквивалентной его функциональному выключению. Это явление называется частотной, или ритмической, потенциацией.

Нарушения функций гиппокампа

В клинике последствия двустороннего поражения Г. (при опухолях, инсультах, «лимбическом» энцефалите, вызываемом вирусом herpes simplex), а также его хирургического удаления (при иссечении очага эпилептической активности в случаях височной эпилепсии) выражаются в нарушениях памяти. Если повреждения гиппокампа не сопровождаются обще-мозговыми нарушениями и не затрагивают соседних структур, наблюдается полная сохранность сенсорных процессов, двигательной и эмоциональной сферы, интеллекта и речи. Навыки и знания, приобретенные больными до поражения Г., остаются сохранными. Однако исчезает способность к запоминанию любой новой информации (антероградная амнезия) и проявляется ретроградная амнезия (см.), при к-рой объем кратковременной памяти может оставаться нормальным, но перехода ее в долговременную не происходит. Наблюдающиеся нарушения не зависят от сенсорной модальности вводимой информации (зрительная, слуховая) или от ее характера (слова, рисунки, двигательные навыки). Т. о., страдает так наз. общий фактор памяти - возможность перехода кратковременной памяти в долговременную. Аналогичные явления - нарушение запоминания предъявляемого материала и забывание предшествующих событий - наблюдаются у человека при электрической стимуляции Г. Одностороннее повреждение Г. не влечет явных последствий.

При необходимости удаления эпилептического очага, захватывающего один Г., предварительно проводят амиталовую пробу, чтобы выяснить, не изменен ли противоположный Г. патол, процессом настолько, что в нем не выявляются судорожные разряды. При этом в Г., подлежащий резекции, вводят амитал натрия, временно выключающий его, и дают тест на запоминание; если запоминание не нарушается, контралатеральный Г. сохранен и операция возможна. Есть указания, что и одностороннее повреждение Г. у человека оказывает влияние на память, хотя более ограниченное и специфическое, - при повреждении Г. доминантного (левого) полушария несколько ухудшается запоминание словесного материала, а при повреждении Г. правого полушария снижается способность запоминать неречевой материал (лица, сочетания линий и т. п.).

Библиография: Виноградова О. С. Гиппокамп и память, М., 1975, библиогр.; Серков Ф. Н. К физиологии гиппокампа, Ф1зюлогичн. журн., т. 14, № 6, с. 830, 1968, библиогр.; Филимон о в И. Н. Сравнительная анатомия коры большого мозга млекопитающих, Палеокортекс, архикортекс и межуточная кора, М., 1949, библиогр.; Douglas R. J. The hippocampus and behavior, Psychol. Bull., v. 67, p. 416, 1967, bibliogr.; The hippocampus, ed. by R. L. Isaacson а. K. H. Prilram, v. 1-2, N.Y., 1975; KimbleD.P. Hippocampus and internal inhibition, Psychol. Bull., v. 70, p. 285, 1968, bibliogr.; Lorente de No R. Studies on structure of cerebral cortex, continuation of study of ammo-nic system, J. Psychol. Neurol. (Lpz.), v. 46, p. 113, 1934; Milner B. Disorders of learning and memory after temporal lobe lesions in man, Clin. Neurosurg., v. 19, p. 421, 1972, bibliogr.; Ramon у Caja 1 S. Studies on the cerebral cortex, L., 1955; o h же, The structure of Ammon’s horn, Springfield, 1968, bibliogr.

О. С. Виноградова.

отвечающий за закрепление воспоминаний, когда они из кратковременной памяти переходят в долговременную, а также за создание эмоций и пространственную ориентацию. В мозге человека имеется два гиппокампа, располагающихся в височных частях полушарий. Связь между ними поддерживается с помощью нервных волокон, которые проходят в спайке свода мозга.

Функции

В прошлом ученые выдвигали версию, что гиппокамп отвечает лишь за обоняние. Но научные исследования, проведенные современными специалистами, доказали его важную роль в формировании ориентации в пространстве, восприятии и хранении информации. Некоторые нейроны гиппокампа, называемые пространственным и клетками, помогают человеку или животному определиться в пространстве и своем местонахождении, найти короткий путь между двумя ориентирами.

Нормальная работа гиппокампа очень важна при обучении, но он не является конечным вместилищем знаний. Для этого существует кора головного мозга. В гиппокампе образуется память о свежих событиях, и только через некоторое время – часы, дни и недели – эта новая информация помещается в кору головного мозга. Структура этого органа является неоднородной, и состоит из нескольких специализированн ых отделов. Благодаря этому гиппокамп способен моментально запоминать различные события, но иногда, чтобы это произошло, необходимо повторение той или иной ситуации, с которой человек уже сталкивался.

Предвзятые решения

Нейропсихологи из США объяснили механизм принятий решений человеком в случаях столкновения его с незнакомыми обстоятельствами, когда нет возможности положиться на предыдущий опыт и просчитать конечный результат выхода из сложившегося положения. В этом случае человек ассоциирует ситуацию с уже ранее происходившими с ним случаями и на основе этого делает выводы. Это влияет на принятие тех или иных решений для выхода из сложившегося положения. Главную роль в принятии таких решений играет гиппокамп.

Уже отмечено, что у людей, которым по роду своего занятия часто приходится сталкиваться с заучиванием той или иной информации или нахождением выхода из положения, например, мысленного прокладывания маршрута, наблюдается увеличение гиппокампа. Кроме того, этого можно добиться регулярными упражнениями – игрой в шашки и шахматы, заучиванием стихов или иностранных языков, решение кроссвордов, развитием своего численного чувства и прочее.

Повреждение гиппокампа

При болезни Альцгеймера первым делом страдает этот орган, что приводит к снижению и потере памяти, дезориентации. Кроме того, повреждение гиппокампа может привести к кислородному голоданию, энцефалиту или к медиальной височной эпилепсии.

При повреждении обоих гиппокампов может наступить антероградная амнезия, при которой человек теряет способность запоминать недавние события, но при этом его долговременная память не страдает. Он сможет дальше продолжать жить, разговаривать, ходить, слышать – делать все, что кажется нормальным и естественным, но не сможет создавать новых воспоминаний. То есть та информация, которую он получит после повреждения гиппокампа, будет ему казаться новой каждый раз, например, каждое посещение врача будет для него как первое.

Ученые доказали, что нормальное функционирование гиппокампа зависит от продолжительност и сна человека. Ночь, проведенная без отдыха, может повлиять на запоминание информации. Так, у человека пропустившего один раз сон, выявилась невозможность восприятия положительных слов почти на 60%, тогда как отрицательных он не смог запомнить лишь на 19%. Из этого следует вывод, что гиппокамп невыспавшегося человека проявляет малую активность.

Просмотров