Формулы и названия кислот. Химия

Кислоты - это такие химические соединения, которые способны отдавать электрически заряженный ион (катион) водорода, а также принимать два взаимодействущих электрона, вследствие чего образуется ковалентная связь.

В данной статье мы рассмотрим основные кислоты, которые изучают в средних классах общеобразовательных школ, а также узнаем множество интересных фактов о самых разных кислотах. Приступим.

Кислоты: виды

В химии существует множество самых разнообразных кислот, которые имеют самые разные свойства. Химики различают кислоты по содержанию в составе кислорода, по летучести, по растворимости в воде, силе, устойчивости, принадлежности к органическому или неорганическому классу химических соединений. В данной статье мы рассмотрим таблицу, в которой представлены самые известные кислоты. Таблица поможет запомнить название кислоты и ее химическую формулу.

Итак, все наглядно видно. В данной таблице представлены самые известные в химической промышленности кислоты. Таблица поможет намного быстрее запомнить названия и формулы.

Сероводородная кислота

H 2 S - это сероводородная кислота. Ее особенность заключается в том, что она еще и является газом. Сероводород очень плохо растоворяется в воде, а также взаимодействует с очень многими металлами. Сероводородная кислота относится к группе "слабые кислоты", примеры которых мы рассмотрим в данной статье.

H 2 S имеет немного сладковатый вкус, а также очень резкий запах тухлых яиц. В природе ее можно встретить в природном или вулканическом газах, а также она выделяется при гниении белка.

Свойства кислот очень разнообразны, даже если кислота незаменима в промышленности, то может быть очень неполезна для здоровья человека. Данная кислота очень токсична для человека. При вдыхании небольшого количество сероводорода у человека пробуждается головная боль, начинается сильная тошнота и головокружение. Если же человек вдохнет большое количество H 2 S, то это может привести к судорогам, коме или даже мгновенной смерти.

Серная кислота

H 2 SO 4 - это сильная серная кислота, с которой дети знакомятся на уроках химии еще в 8-м классе. Химические кислоты, такие как серная, являются очень сильными окислителями. H 2 SO 4 действует как окислитель на очень многие металлы, а также основные оксиды.

H 2 SO 4 при попадании на кожу или одежду вызывает химические ожоги, однако она не так токсична, как сероводород.

Азотная кислота

В нашем мире очень важны сильные кислоты. Примеры таких кислот: HCl, H 2 SO 4 , HBr, HNO 3 . HNO 3 - это всем известная азотная кислота. Она нашла широкое применение в промышленности, а также в сельском хозяйстве. Ее используют для изготовления различных удобрений, в ювелирном деле, при печати фотографий, в производстве лекарственных препаратов и красителей, а также в военной промышленности.

Такие химические кислоты, как азотная, являются очень вредными для организма. Пары HNO 3 оставляют язвы, вызывают острые воспаления и раздражения дыхательных путей.

Азотистая кислота

Азотистую кислоту очень часто путают с азотной, но разница между ними есть. Дело в том, что намного слабее азотной, у нее совершенно другие свойства и действие на организм человека.

HNO 2 нашла широкое применение в химической промышленности.

Плавиковая кислота

Плавиковая кислота (или фтороводород) - это раствор H 2 O c HF. Формула кислоты - HF. Плавиковая кислота очень активно используется в алюминиевой промышленности. Ею растворяют силикаты, травят кремний, силикатное стекло.

Фтороводород является очень вредным для организма человека, в зависимости от его концентрации может быть легким наркотиком. При попадании на кожу сначала никаких изменений, но уже через несколько минут может появиться резкая боль и химический ожог. Плавиковая кислота очень вредна для окружающего мира.

Соляная кислота

HCl - это хлористый водород, является сильной кислотой. Хлористый водород сохраняет свойства кислот, относящихся к группе сильных. На вид кислота прозрачна и бесцветна, а на воздухе дымится. Хлористый водород широко применяется в металлургической и пищевой промышленностях.

Данная кислота вызывает химические ожоги, но особо опасно ее попадание в глаза.

Фосфорная кислота

Фосфорная кислота (H 3 PO 4) - это по своим свойствам слабая кислота. Но даже слабые кислоты могут иметь свойства сильных. Например, H 3 PO 4 используют в промышленности для восстановления железа из ржавчины. Помимо этого, форсфорная (или ортофосфорная) кислота широко используется в сельском хозяйстве - из нее изготавливают множество разнообразных удобрений.

Свойства кислот очень схожи - практически каждая из них очень вредна для организма человека, H 3 PO 4 не является исключением. Например, эта кислота также вызывает сильные химические ожоги, кровотечения из носа, а также крошение зубов.

Угольная кислота

H 2 CO 3 - слабая кислота. Ее получают при растворении CO 2 (углекислый газ) в H 2 O (вода). Угольную кислоту используют в биологии и биохимии.

Плотность различных кислот

Плотность кислот занимает важное место в теоретической и практической частях химии. Благодаря знанию плотности можно определить концентрацию той или иной кислоты, решить расчетные химические задачи и добавить правильное количество кислоты для совершения реакции. Плотность любой кислоты меняется в зависимости от концентрации. Например, чем больше процент концентрации, тем больше и плотность.

Общие свойства кислот

Абсолютно все кислоты являются (то есть состоят из нескольких элементов таблицы Менделеева), при этом обязательно включают в свой состав H (водород). Далее мы рассмотрим которые являются общими:

  1. Все кислородсодержащие кислоты (в формуле которых присутствует O) при разложении образуют воду, а также А бескислородные при этом разлагаются на простые вещества (например, 2HF разлагается на F 2 и H 2).
  2. Кислоты-окислители взаимодействуют со всеми металлами в ряду активности металлов (только с теми, которые расположены слева от H).
  3. Взаимодействуют с различными солями, но только с теми, которые были образованы еще более слабой кислотой.

По своим физическим свойствам кислоты резко отличаются друг от друга. Ведь они могут иметь запах и не иметь его, а также быть в самых разных агрегатных состояниях: жидких, газообразных и даже твердых. Очень интересны для изучения твердые кислоты. Примеры таких кислот: C 2 H 2 0 4 и H 3 BO 3 .

Концентрация

Концентрацией называют величину, которая определяет количественный состав любого раствора. Например, химикам часто необходимо определить то, сколько в разбавленной кислоте H 2 SO 4 находится чистой серной кислоты. Для этого они наливают небольшое количество разбавленной кислоты в мерный стакан, взвешивают и определяют концентрацию по таблице плотности. Концентрация кислот узко взаимосвязана с плотностью, часто на определение концетрации встречаются расчетные задачи, где нужно определить процентное количество чистой кислоты в растворе.

Классификация всех кислот по количеству атомов H в их химической формуле

Одной из самых популярных классификаций является разделение всех кислот на одноосновные, двухосновные и, соответственно, трехосновные кислоты. Примеры одноосновных кислот: HNO 3 (азотная), HCl (хлороводородная), HF (фтороводородная) и другие. Данные кислоты называются одноосновными, так как в их составе присутствует всего лишь один атом H. Таких кислот множество, абсолютно каждую запомнить невозможно. Нужно лишь запомнить, что кислоты классифицируют и по количеству атомов H в их составе. Аналогично определяются и двухосновные кислоты. Примеры: H 2 SO 4 (серная), H 2 S (сероводородная), H 2 CO 3 (угольная) и другие. Трехосновные: H 3 PO 4 (фосфорная).

Основная классификация кислот

Одной из самых популярных классификаций кислот является разделение их на кислородосодержащие и бескислородные. Как запомнить, не зная химической формулы вещества, что это кислота кислородосодержащая?

У всех бескислородных кислот в составе отсутствует важный элемент O - кислород, но зато в составе есть H. Поэтому к их названию всегда приписывается слово "водородная". HCl - это a H 2 S - сероводородная.

Но и по названиям кислосодержащих кислот можно написать формулу. Например, если число атомов O в веществе - 4 или 3, то к названию всегда прибавляется суффикс -н-, а также окончание -ая-:

  • H 2 SO 4 - серная (число атомов - 4);
  • H 2 SiO 3 - кремниевая (число атомов - 3).

Если же в веществе меньше трех атомов кислорода или три, то в названии используется суффикс -ист-:

  • HNO 2 - азотистая;
  • H 2 SO 3 - сернистая.

Общие свойства

Все кислоты имеют вкус кислый и часто немного металлический. Но есть и другие схожие свойства, которые мы сейчас рассмотрим.

Есть такие вещества, которые называются индикаторами. Индикаторы изменяют свой цвет, или же цвет остается, но меняется его оттенок. Это происходит в то время, когда на индикаторы действуют какие-то другие вещества, например кислоты.

Примером изменения цвета может служить такой привычный многим продукт, как чай, и лимонная кислота. Когда в чай бросают лимон, то чай постепенно начинает заметно светлеть. Это происходит из-за того, что в лимоне содержится лимонная кислота.

Существуют и другие примеры. Лакмус, который в нейтральной среде имеет сиреневый цвет, при добавлении соляной кислоты становится красным.

При находящимися в ряду напряженности до водорода, выделяются пузырьки газа - H. Однако если в пробирку с кислотой поместить металл, который находится в ряду напряженности после H, то никакой реакции не произойдет, выделения газа не будет. Так, медь, серебро, ртуть, платина и золото с кислотами реагировать не будут.

В данной статье мы рассмотрели самые известные химические кислоты, а также их главные свойства и различия.

Называются вещества, диссоциирующие в растворах с образованием ионов водорода.

Кислоты классифицируются по их силе, по основности и по наличию или отсутствию кислорода в составе кислоты.

По силе кислоты делятся на сильные и слабые. Важнейшие сильные кислоты - азотная HNO 3 , серная H 2 SO 4 , и соляная HCl .

По наличию кислорода различают кислородсодержащие кислоты ( HNO 3 , H 3 PO 4 и т.п.) и бескислородные кислоты ( HCl , H 2 S , HCN и т.п.).

По основности , т.е. по числу атомов водорода в молекуле кислоты, способных замещаться атомами металла с образованием соли, кислоты подразделяются на одноосновные (например, HNO 3 , HCl ), двухосновные (H 2 S , H 2 SO 4 ), трехосновные (H 3 PO 4 ) и т. д.

Названия бескислородных кислот производятся от названия неметалла с прибавлением окончания -водородная: HCl - хлороводородная кислота, H 2 S е - селеноводородная кислота, HCN - циановодородная кислота.

Названия кислородсодержащих кислот также образуются от русского названия соответствующего элемента с добавлением слова «кислота». При этом название кислоты, в которой элемент находится в высшей степени окисления , оканчивается на «ная» или «овая», например, H 2 SO 4 - серная кислота, HClO 4 - хлорная кислота, H 3 AsO 4 - мышьяковая кислота. С понижением степени окисления кислотообразующего элемента окончания изменяются в следующей последовательности: «оватая» ( HClO 3 - хлорноватая кислота), «истая» ( HClO 2 - хлористая кислота), «оватистая» ( H О Cl - хлорноватистая кислота). Если элемент образует кислоты, находясь только в двух степенях окисления, то название кислоты, отвечающее низшей степени окисления элемента, получает окончание «истая» ( HNO 3 - азотная кислота, HNO 2 - азотистая кислота).

Таблица - Важнейшие кислоты и их соли

Кислота

Названия соответствующих нормальных солей

Название

Формула

Азотная

HNO 3

Нитраты

Азотистая

HNO 2

Нитриты

Борная (ортоборная)

H 3 BO 3

Бораты (ортобораты)

Бромоводородная

Бромиды

Иодоводородная

Иодиды

Кремниевая

H 2 SiO 3

Силикаты

Марганцовая

HMnO 4

Перманганаты

Метафосфорная

HPO 3

Метафосфаты

Мышьяковая

H 3 AsO 4

Арсенаты

Мышьяковистая

H 3 AsO 3

Арсениты

Ортофосфорная

H 3 PO 4

Ортофосфаты (фосфаты)

Дифосфорная (пирофосфорная)

H 4 P 2 O 7

Дифосфаты (пирофосфаты)

Дихромовая

H 2 Cr 2 O 7

Дихроматы

Серная

H 2 SO 4

Сульфаты

Сернистая

H 2 SO 3

Сульфиты

Угольная

H 2 CO 3

Карбонаты

Фосфористая

H 3 PO 3

Фосфиты

Фтороводородная (плавиковая)

Фториды

Хлороводородная (соляная)

Хлориды

Хлорная

HClO 4

Перхлораты

Хлорноватая

HClO 3

Хлораты

Хлорноватистая

HClO

Гипохлориты

Хромовая

H 2 CrO 4

Хроматы

Циановодородная (синильная)

Цианиды

Получение кислот

1. Бескислородные кислоты могут быть получены при непосредственном соединении неметаллов с водородом:

H 2 + Cl 2 → 2HCl,

H 2 + S H 2 S.

2. Кислородсодержащие кислоты нередко могут быть получены при непосредственном соединении кислотных оксидов с водой:

SO 3 + H 2 O = H 2 SO 4 ,

CO 2 + H 2 O = H 2 CO 3 ,

P 2 O 5 + H 2 O = 2 HPO 3 .

3. Как бескислородные, так и кислородсодержащие кислоты можно получить по реакциям обмена между солями и другими кислотами:

BaBr 2 + H 2 SO 4 = BaSO 4 + 2HBr,

CuSO 4 + H 2 S = H 2 SO 4 + CuS,

CaCO 3 + 2HBr = CaBr 2 + CO 2 + H 2 O.

4. В ряде случаев для получения кислот могут быть использованы окислительно-восстановительные реакции:

H 2 O 2 + SO 2 = H 2 SO 4 ,

3P + 5HNO 3 + 2H 2 O = 3H 3 PO 4 + 5NO .

Химические свойства кислот

1. Наиболее характерное химическое свойство кислот - их способность реагировать с основаниями (а также с основными и амфотерными оксидами) с образованием солей, например:

H 2 SO 4 + 2NaOH = Na 2 SO 4 + 2H 2 O,

2HNO 3 + FeO = Fe(NO 3) 2 + H 2 O,

2 HCl + ZnO = ZnCl 2 + H 2 O .

2. Способность взаимодействовать с некоторыми металлами, стоящими в ряду напряжения до водорода, с выделением водорода:

Zn + 2HCl = ZnCl 2 + H 2 ,

2Al + 6HCl = 2AlCl 3 + 3H 2 .

3. С солями, если образуется малорастворимая соль или летучее вещество:

H 2 SO 4 + BaCl 2 = BaSO 4 ↓ + 2HCl,

2HCl + Na 2 CO 3 = 2NaCl + H 2 O + CO 2 ,

2KHCO 3 + H 2 SO 4 = K 2 SO 4 +2SO 2 + 2H 2 O.

Заметим, что многоосновные кислоты диссоциируют ступенчато, причем легкость диссоциации по каждой из ступеней падает, поэтому для многоосновных кислот вместо средних солей часто образуются кислые (в случае избытка реагирующей кислоты):

Na 2 S + H 3 PO 4 = Na 2 HPO 4 + H 2 S ,

NaOH + H 3 PO 4 = NaH 2 PO 4 + H 2 O.

4. Частным случаем кислотно-основного взаимодействия являются реакции кислот с индикаторами, приводящие к изменению окраски, что издавна используется для качественного обнаружения кислот в растворах. Так, лакмус изменяет цвет в кислой среде на красный.

5. При нагревании кислородсодержащие кислоты разлагаются на оксид и воду (лучше в присутствии водоотнимающего P 2 O 5 ):

H 2 SO 4 = H 2 O + SO 3 ,

H 2 SiO 3 = H 2 O + SiO 2 .

М.В. Андрюxoва, Л.Н. Бopoдина


Бескислородные: Основность Название соли
HCl - хлористоводородная (соляная) одноосновная хлорид
HBr - бромистоводородная одноосновная бромид
HI - йодистоводородная одноосновная йодид
HF - фтористоводородная (плавиковая) одноосновная фторид
H 2 S - сероводородная двухосновная сульфид
Кислородсодержащие:
HNO 3 – азотная одноосновная нитрат
H 2 SO 3 - сернистая двухосновная сульфит
H 2 SO 4 – серная двухосновная сульфат
H 2 CO 3 - угольная двухосновная карбонат
H 2 SiO 3 - кремниевая двухосновная силикат
H 3 PO 4 - ортофосфорная трёхосновная ортофосфат

Соли – сложные вещества, которые состоят из атомов металла и кислотных остатков. Это наиболее многочисленный класс неорганических соединений.

Классификация. По составу и свойствам: средние, кислые, основные, двойные, смешанные, комплексные

Средние соли являются продуктами полного замещения атомов водорода многоосновной кислоты на атомы металла.

При диссоциации дают только катионы металла (или NH 4 +). Например:

Na 2 SO 4 ® 2Na + +SO

CaCl 2 ® Ca 2+ + 2Cl -

Кислые соли являются продуктами неполного замещения атомов водорода многоосновной кислоты на атомы металла.

При диссоциации дают катионы металла (NH 4 +), ионы водорода и анионы кислотного остатка, например:

NaHCO 3 ® Na + + HCO « H + +CO .

Основные соли являются продуктами неполного замещения групп OH - соответствующего основания на кислотные остатки.

При диссоциации дают катионы металла, анионы гидроксила и кислотного остатка.

Zn(OH)Cl ® + + Cl - « Zn 2+ + OH - + Cl - .

Двойные соли содержат два катиона металла и при диссоциации дают два катиона и один анион.

KAl(SO 4) 2 ® K + + Al 3+ + 2SO

Комплексны соли содержат комплексные катионы или анионы.

Br ® + + Br - « Ag + +2 NH 3 + Br -

Na ® Na + + - « Na + + Ag + + 2 CN -

Генетическая связь между различными классами соединений

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Оборудование и посуда : штатив с пробирками, промывалка, спиртовка.

Реактивы и материалы : красный фосфор,оксид цинка, гранулы Zn, порошок гашеной извести Ca(OH) 2 , 1 моль/дм 3 растворы NaOH, ZnSO 4 , СuSO 4 , AlCl 3 , FeCl 3 , HСl, H 2 SO 4 , универсальная индикаторная бумага, раствор фенолфталеина, метилоранжа, дистиллированная вода.

Порядок выполнения работы

1. Оксид цинка насыпать в две пробирки; в одну добавить раствор кислоты (HCl или H 2 SO 4) в другую раствор щелочи (NaOH или KOH) и слегка нагреть на спиртовке.

Наблюдения: Происходит ли растворение оксида цинка в растворе кислоты и щелочи?

Написать уравнения

Выводы: 1.К какому типу оксидов относится ZnO?

2. Какими свойствами обладают амфотерные оксиды?

Получение и свойства гидроксидов

2.1. В раствор щелочи (NaOH или KOH) опустить кончик универсальной индикаторной полоски. Сравнить полученный цвет индикаторной полоски со стандартной цветовой шкалой.

Наблюдения: Записать значение рН раствора.

2.2. Взять четыре пробирки, налить в первую 1 мл раствора ZnSO 4 , во вторую - СuSO 4 , в третью - AlCl 3 , в четвертую - FeCl 3 . В каждую пробирку добавить 1мл раствора NaOH. Написать наблюдения и уравнения происходящих реакций.

Наблюдения: Происходит ли выпадение осадка при добавлении щелочи к раствору соли? Укажите цвет осадка.

Написать уравнения происходящих реакций (в молекулярном и ионном виде).

Выводы: Какими способами могут быть получены гидроксиды металлов?

2.3. Половину осадков, полученных в опыте 2.2., перенести в другие пробирки. На одну часть осадка подействовать раствором H 2 SO 4 на другую – раствором NaOH.

Наблюдения: Происходит ли растворение осадков при добавлении щелочи и кислоты к осадкам?

Написать уравнения происходящих реакций (в молекулярном и ионном виде).

Выводы: 1.К какому типу гидроксидов относятся Zn(OH) 2 , Al(OH) 3 , Сu(OH) 2 , Fe(OH) 3 ?

2. Какими свойствами обладают амфотерные гидроксиды?

Получение солей.

3.1. В пробирку налить 2 мл раствора CuSO 4 и опустить в этот раствор очищенный гвоздь. (Реакция идет медленно, изменения на поверхности гвоздя появляются через 5-10 мин).

Наблюдения: Происходят ли какие-то изменения с поверхностью гвоздя? Что осаждается?

Написать уравнение окислительно-восстановительной реакции.

Выводы: Принимая во внимание ряд напряжений металлов, укажите способ получения солей.

3.2. В пробирку поместить одну гранулу цинка и прилить раствор HCl.

Наблюдения: Происходят ли выделение газа?

Написать уравнение

Выводы: Объясните данный способ получения солей?

3.3. В пробирку насыпать немного порошка гашеной извести Ca(OH) 2 и прилить раствор HСl.

Наблюдения: Происходит ли выделение газа?

Написать уравнение происходящей реакции (в молекулярном и ионном виде).

Вывод: 1. К какому типу относится реакция взаимодействия гидроксида и кислоты?

2.Какие вещества являются продуктами этой реакции?

3.5. В две пробирки налейте по 1 мл растворов солей: в первую – сульфата меди, во вторую – хлорида кобальта. Добавьте в обе пробирки по каплям раствор гидроксида натрия до образования осадков. Затем добавьте в обе пробирки избыток щелочи.

Наблюдения: Укажите изменения цвета осадков в реакциях.

Написать уравнение происходящей реакции (в молекулярном и ионном виде).

Вывод: 1. В результате каких реакций образуются основные соли?

2. Как можно перевести основные соли в средние?

Контрольные задания:

1. Из перечисленных веществ выписать формулы солей, оснований, кислот: Ca(OH) 2, Ca(NO 3) 2, FeCl 3, HCl, H 2 O, ZnS, H 2 SO 4, CuSO 4, KOH
Zn(OH) 2, NH 3, Na 2 CO 3, K 3 PO 4 .

2. Укажите формулы оксидов, соответствующие перечисленным веществам H 2 SO 4 , H 3 AsO 3 , Bi(OH) 3 , H 2 MnO 4 , Sn(OH) 2 , KOH, H 3 PO 4 , H 2 SiO 3 , Ge(OH) 4 .

3. Какие гидроксиды относятся к амфотерным? Составьте уравнения реакций, характеризующих амфотерность гидроксида алюминия и гидроксида цинка.

4. Какие из указанных соединений будут попарно взаимодействовать: P 2 O 5 , NaOH, ZnO, AgNO 3 , Na 2 CO 3 , Cr(OH) 3 , H 2 SO 4 . Составьте уравнения возможных реакций.


Лабораторная работа № 2 (4 ч.)

Тема: Качественный анализ катионов и анионов

Цель: освоить технику проведения качественных и групповых реак­ций на катионы и анионы.

ТЕОРЕТИЧЕСКАЯ ЧАСТЬ

Основной задачей качественного анализа является установление химического состава веществ, находящихся в разнообразных объектах (биологических материалах, лекарственных препаратах, продуктах питания, объектах окружающей среды). В настоящей работе рассматривается качественный анализ неорганических веществ, являющихся электролитами, т. е. по сути качественный анализ ионов. Из всей совокупности встречающихся ионов выбраны наиболее важные в медико-биологическом отношении: (Fе 3+ , Fе 2+ , Zn 2+ , Са 2+ , Na + , К + , Мg 2+ , Сl - , РО , СО и др.). Многие из этих ионов входят в состав различных лекарственных препаратов и продуктов питания.

В качественном анализе используются не все возможные реакции, а только те, которые сопровождаются отчетливым аналитическим эффектом. Наиболее часто встречающиеся аналитические эффекты: появление новой окраски, выделение газа, образование осадка.

Существуют два принципиально разных подхода к качественному анализу: дробный и систематический . В систематическом анализе обязательно используют групповые реагенты, позволяющие разделить присутствующие ионы на отдельные группы, а в некоторых случаях и на подгруппы. Для этого часть ионов переводят в состав нерастворимых соединений, а часть ионов оставляют в растворе. После отделения осадка от раствора анализ их проводят раздельно.

Например, в растворе имеются ионы А1 3+ , Fе 3+ и Ni 2+ . Если на этот раствор подействовать избытком щелочи, выпадает осадок Fе(ОН) 3 и Ni(ОН) 2 , а в растворе остаются ионы [А1(ОН) 4 ] - . Осадок, содержащий гидроксиды железа и никеля, при обработке аммиаком частично растворится за счет перехода в раствор 2+ . Таким образом, с помощью двух реагентов - щелочи и аммиака были получены два раствора: в одном содержались ионы [А1(ОН) 4 ] - , в другом - ионы 2+ и осадок Fе(ОН) 3 . С помощью характерных реакций затем доказывается наличие тех или иных ионов в растворах и в осадке, который предварительно нужно растворить.

Систематический анализ используют в основном для обнаружения ионов в сложных многокомпонентных смесях. Он очень трудоемок, од­нако преимущество его заключается в легкой формализации всех дейст­вий, укладывающихся в четкую схему (методику).

Для проведения дробного анализа используют только характерные реакции. Очевидно, что присутствие других ионов может значительно искажать результаты реакции (наложение окрасок друг на друга, выпаде­ние нежелательных осадков и т. д.). Во избежание этого в дробном ана­лизе используют в основном высокоспецифические реакции, дающие аналитический эффект с небольшим числом ионов. Для успешного проведения реакций очень важно поддерживать определенные усло­вия, в частности, рН. Очень часто в дробном анализе приходится прибе­гать к маскировке, т. е. к переводу ионов в соединения, не способные да­вать аналитический эффект с выбранным реактивом. Например, для об­наружения иона никеля используется диметилглиоксим. Сходный анали­тический эффект с этим реагентом дает и ион Fе 2+ . Для обнаружения Ni 2+ ион Fе 2+ переводят в прочный фторидный комплекс 4- или же окис­ляют до Fе 3+ , например, пероксидом водорода.

Дробный анализ используют для обнаружения ионов в более про­стых смесях. Время анализа значительно сокращается, однако при этом от экспериментатора требуется более глубокое знание закономерностей протекания химических реакций, так как учесть в одной конкретной ме­тодике все возможные случаи взаимного влияния ионов на характер на­блюдаемых аналитических эффектов достаточно сложно.

В аналитической практике часто применяют так называемый дроб­но-систематический метод. При таком подходе используется минималь­ное число групповых реактивов, что позволяет наметить тактику анализа в общих чертах, который затем осуществляется дробным методом.

По технике проведения аналитических реакций различают реакции: осадочные; микрокристаллоскопические; сопровождающиеся выделени­ем газообразных продуктов; проводимые на бумаге; экстракционные; цветные в растворах; окрашивания пламени.

При проведении осадочных реакций обязательно отмечают цвет и характер осадка (кристаллический, аморфный), при необходимости про­водят дополнительные испытания: проверяют осадок на растворимость в сильных и слабых кислотах, щелочах и аммиаке, избытке реактива. При проведении реакций, сопровождающихся выделением газа, отмечают его цвет и запах. В некоторых случаях проводят дополнительные испытания.

Например, если предполагают, что выделяющийся газ – оксид углерода (IV), его пропускают через избыток известковой воды.

В дробном и систематическом анализах широко используются реакции, в ходе которых появляется новая окраска, чаще всего это реакции комплексообразования или окислительно-восстановительные реакции.

В отдельных случаях такие реакции удобно проводить на бумаге (капельные реакции). Реактивы, не подвергающиеся разложению в обычных условиях, наносят на бумагу заранее. Так, для обнаружения сероводорода или сульфид-ионов применяют бумагу, пропитанную нитратом свинца [происходит почернение за счет образования сульфида свинца(II)]. Многие окислители обнаруживают с помощью йодкрахмальной бумаги, т.е. бумаги, пропитанной растворами иодида калия и крахмала. В большинстве же случаев необходимые реактивы наносят на бумагу во время проведения реакции, например, ализарин на ион А1 3+ , купрон на ион Сu 2+ и др. Для усиления окраски иногда применяют экс­тракцию в органический растворитель. Для предварительных испытаний используют реакции окрашивания пламени.

7. Кислоты. Соли. Взаимосвязь между классами неорганических веществ

7.1. Кислоты

Кислоты - это электролиты, при диссоциации которых в качестве положительно заряженных ионов образуются только катионы водорода H + (точнее - ионы гидроксония H 3 O +).

Другое определение: кислоты - это сложные вещества, состоящие из атома водорода и кислотных остатков (табл. 7.1).

Таблица 7.1

Формулы и названия некоторых кислот, кислотных остатков и солей

Формула кислоты Название кислоты Кислотный остаток (анион) Название солей (средних)
HF Фтористоводородная (плавиковая) F − Фториды
HCl Хлористоводородная (соляная) Cl − Хлориды
HBr Бромистоводородная Br − Бромиды
HI Иодистоводородная I − Иодиды
H 2 S Сероводородная S 2− Сульфиды
H 2 SO 3 Сернистая SO 3 2 − Сульфиты
H 2 SO 4 Серная SO 4 2 − Сульфаты
HNO 2 Азотистая NO 2 − Нитриты
HNO 3 Азотная NO 3 − Нитраты
H 2 SiO 3 Кремниевая SiO 3 2 − Силикаты
HPO 3 Метафосфорная PO 3 − Метафосфаты
H 3 PO 4 Ортофосфорная PO 4 3 − Ортофосфаты (фосфаты)
H 4 P 2 O 7 Пирофосфорная (двуфосфорная) P 2 O 7 4 − Пирофосфаты (дифосфаты)
HMnO 4 Марганцевая MnO 4 − Перманганаты
H 2 CrO 4 Хромовая CrO 4 2 − Хроматы
H 2 Cr 2 O 7 Дихромовая Cr 2 O 7 2 − Дихроматы (бихроматы)
H 2 SeO 4 Селеновая SeO 4 2 − Селенаты
H 3 BO 3 Борная BO 3 3 − Ортобораты
HClO Хлорноватистая ClO – Гипохлориты
HClO 2 Хлористая ClO 2 − Хлориты
HClO 3 Хлорноватая ClO 3 − Хлораты
HClO 4 Хлорная ClO 4 − Перхлораты
H 2 CO 3 Угольная CO 3 3 − Карбонаты
CH 3 COOH Уксусная CH 3 COO − Ацетаты
HCOOH Муравьиная HCOO − Формиаты

При обычных условиях кислоты могут быть твердыми веществами (H 3 PO 4 , H 3 BO 3 , H 2 SiO 3) и жидкостями (HNO 3 , H 2 SO 4 , CH 3 COOH). Эти кислоты могут существовать как в индивидуальном (100%-ном виде), так и в виде разбавленных и концентрированных растворов. Например, как в индивидуальном виде, так и в растворах известны H 2 SO 4 , HNO 3 , H 3 PO 4 , CH 3 COOH.

Ряд кислот известны только в растворах. Это все галогеноводородные (HCl, HBr, HI), сероводородная H 2 S, циановодородная (синильная HCN), угольная H 2 CO 3 , сернистая H 2 SO 3 кислота, которые представляют собой растворы газов в воде. Например, соляная кислота - это смесь HCl и H 2 O, угольная - смесь CO 2 и H 2 O. Понятно, что употреблять выражение «раствор соляной кислоты» неправильно.

Большинство кислот растворимы в воде, нерастворима кремниевая кислота H 2 SiO 3 . Подавляющее число кислот имеют молекулярное строение. Примеры структурных формул кислот:

В большинстве молекул кислородсодержащих кислот все атомы водорода связаны с кислородом. Но есть и исключения:


Кислоты классифицируют по ряду признаков (табл. 7.2).

Таблица 7.2

Классификация кислот

Признак классификации Тип кислоты Примеры
Число ионов водорода, образующихся при полной диссоциации молекулы кислоты Одноосновные HCl, HNO 3 , CH 3 COOH
Двухосновные H 2 SO 4 , H 2 S, H 2 CO 3
Трехосновные H 3 PO 4 , H 3 AsO 4
Наличие или отсутствие в молекуле атома кислорода Кислородсодержащие (кислотные гидроксиды, оксокислоты) HNO 2 , H 2 SiO 3 , H 2 SO 4
Бескислородные HF, H 2 S, HCN
Степень диссоциации (сила) Сильные (полностью диссоциируют, сильные электролиты) HCl, HBr, HI, H 2 SO 4 (разб), HNO 3 , HClO 3 , HClO 4 , HMnO 4 , H 2 Cr 2 O 7
Слабые (диссоциируют частично, слабые электролиты) HF, HNO 2 , H 2 SO 3 , HCOOH, CH 3 COOH, H 2 SiO 3 , H 2 S, HCN, H 3 PO 4 , H 3 PO 3 , HClO, HClO 2 , H 2 CO 3 , H 3 BO 3 , H 2 SO 4 (конц)
Окислительные свойства Окислители за счет ионов Н + (условно кислоты-неокислители) HCl, HBr, HI, HF, H 2 SO 4 (разб), H 3 PO 4 , CH 3 COOH
Окислители за счет аниона (кислоты-окислители) HNO 3 , HMnO 4 , H 2 SO 4 (конц), H 2 Cr 2 O 7
Восстановители за счет аниона HCl, HBr, HI, H 2 S (но не HF)
Термическая устойчивость Существуют только в растворах H 2 CO 3 , H 2 SO 3 , HClO, HClO 2
Легко разлагаются при нагревании H 2 SO 3 , HNO 3 , H 2 SiO 3
Термически устойчивы H 2 SO 4 (конц), H 3 PO 4

Все общие химические свойства кислот обусловлены наличием в их водных растворах избытка катионов водорода H + (H 3 O +).

1. Вследствие избытка ионов H + водные растворы кислот изменяют окраску лакмуса фиолетового и метилоранжа на красную, (фенолфталеин окраску не изменяет, остается бесцветным). В водном растворе слабой угольной кислоты лакмус не красный, а розовый, раствор над осадком очень слабой кремниевой кислоты вообще не изменяет окраску индикаторов.

2. Кислоты взаимодействуют с основными оксидами, основаниями и амфотерными гидроксидами, гидратом аммиака (см. гл. 6).

Пример 7.1. Для осуществления превращения BaO → BaSO 4 можно использовать: а) SO 2 ; б) H 2 SO 4 ; в) Na 2 SO 4 ; г) SO 3 .

Решение. Превращение можно осуществить, используя H 2 SO 4:

BaO + H 2 SO 4 = BaSO 4 ↓ + H 2 O

BaO + SO 3 = BaSO 4

Na 2 SO 4 с BaO не реагирует, а в реакции BaO с SO 2 образуется сульфит бария:

BaO + SO 2 = BaSO 3

Ответ : 3).

3. Кислоты реагируют с аммиаком и его водными растворами с образованием солей аммония:

HCl + NH 3 = NH 4 Cl - хлорид аммония;

H 2 SO 4 + 2NH 3 = (NH 4) 2 SO 4 - сульфат аммония.

4. Кислоты-неокислители с образованием соли и выделением водорода реагируют с металлами, расположенными в ряду активности до водорода:

H 2 SO 4 (разб) + Fe = FeSO 4 + H 2

2HCl + Zn = ZnCl 2 = H 2

Взаимодействие кислот-окислителей (HNO 3 , H 2 SO 4 (конц)) с металлами очень специфично и рассматривается при изучении химии элементов и их соединений.

5. Кислоты взаимодействуют с солями. Реакция имеет ряд особенностей:

а) в большинстве случаев при взаимодействии более сильной кислоты с солью более слабой кислоты образуется соль слабой кислоты и слабая кислота или, как говорят, более сильная кислота вытесняет более слабую. Ряд убывания силы кислот выглядит так:

Примеры протекающих реакций:

2HCl + Na 2 CO 3 = 2NaCl + H 2 O + CO 2

H 2 CO 3 + Na 2 SiO 3 = Na 2 CO 3 + H 2 SiO 3 ↓

2CH 3 COOH + K 2 CO 3 = 2CH 3 COOK + H 2 O + CO 2

3H 2 SO 4 + 2K 3 PO 4 = 3K 2 SO 4 + 2H 3 PO 4

Не взаимодействуют между собой, например, KCl и H 2 SO 4 (разб), NaNO 3 и H 2 SO 4 (разб), K 2 SO 4 и HCl (HNO 3 , HBr, HI), K 3 PO 4 и H 2 CO 3 , CH 3 COOK и H 2 CO 3 ;

б) в некоторых случаях более слабая кислота вытесняет из соли более сильную:

CuSO 4 + H 2 S = CuS↓ + H 2 SO 4

3AgNO 3 (разб) + H 3 PO 4 = Ag 3 PO 4 ↓ + 3HNO 3 .

Такие реакции возможны тогда, когда осадки полученных солей не растворяются в образующихся разбавленных сильных кислотах (H 2 SO 4 и HNO 3);

в) в случае образования осадков, нерастворимых в сильных кислотах, возможно протекание реакции между сильной кислотой и солью, образованной другой сильной кислотой:

BaCl 2 + H 2 SO 4 = BaSO 4 ↓ + 2HCl

Ba(NO 3) 2 + H 2 SO 4 = BaSO 4 ↓ + 2HNO 3

AgNO 3 + HCl = AgCl↓ + HNO 3

Пример 7.2. Укажите ряд, в котором приведены формулы веществ, которые реагируют с H 2 SO 4 (разб).

1) Zn, Al 2 O 3 , KCl (p-p); 3) NaNO 3 (p-p), Na 2 S, NaF;2) Cu(OH) 2 , K 2 CO 3 , Ag; 4) Na 2 SO 3 , Mg, Zn(OH) 2 .

Решение. С H 2 SO 4 (разб) взаимодействуют все вещества ряда 4):

Na 2 SO 3 + H 2 SO 4 = Na 2 SO 4 + H 2 O + SO 2

Mg + H 2 SO 4 = MgSO 4 + H 2

Zn(OH) 2 + H 2 SO 4 = ZnSO 4 + 2H 2 O

В ряду 1) неосуществима реакция с KCl (p-p), в ряду 2) - с Ag, в ряду 3) - с NaNO 3 (p-p).

Ответ : 4).

6. Очень специфически в реакциях с солями ведет себя концентрированная серная кислота. Это нелетучая и термически устойчивая кислота, поэтому из твердых (!) солей вытесняет все сильные кислоты, так как они более летучие, чем H 2 SO 4 (конц):

KCl (тв) + H 2 SO 4 (конц) KHSO 4 + HCl

2KCl (тв) + H 2 SO 4 (конц) K 2 SO 4 + 2HCl

Соли, образованные сильными кислотами (HBr, HI, HCl, HNO 3 , HClO 4), реагируют только с концентрированной серной кислотой и только находясь в твердом состоянии

Пример 7.3. Концентрированная серная кислота, в отличие от разбавленной, реагирует:

3) KNO 3 (тв);

Решение. С KF, Na 2 CO 3 и Na 3 PO 4 реагируют обе кислоты, а с KNO 3 (тв) - только H 2 SO 4 (конц).

Ответ : 3).

Способы получения кислот весьма разнообразны.

Бескислородные кислоты получают:

  • растворением в воде соответствующих газов:

HCl (г) + H 2 O (ж) → HCl (p-p)

H 2 S (г) + H 2 O (ж) → H 2 S (р-р)

  • из солей вытеснением более сильными или менее летучими кислотами:

FeS + 2HCl = FeCl 2 + H 2 S

KCl (тв) + H 2 SO 4 (конц) = KHSO 4 + HCl

Na 2 SO 3 + H 2 SO 4 Na 2 SO 4 + H 2 SO 3

Кислородсодержащие кислоты получают:

  • растворением соответствующих кислотных оксидов в воде, при этом степень окисления кислотообразующего элемента в оксиде и кислоте остается одинаковой (исключение - NO 2):

N 2 O 5 + H 2 O = 2HNO 3

SO 3 + H 2 O = H 2 SO 4

P 2 O 5 + 3H 2 O 2H 3 PO 4

  • окислением неметаллов кислотами-окислителями:

S + 6HNO 3 (конц) = H 2 SO 4 + 6NO 2 + 2H 2 O

  • вытеснением сильной кислоты из соли другой сильной кислоты (если выпадает нерастворимый в образующихся кислотах осадок):

Ba(NO 3) 2 + H 2 SO 4 (разб) = BaSO 4 ↓ + 2HNO 3

AgNO 3 + HCl = AgCl↓ + HNO 3

  • вытеснением летучей кислоты из ее солей менее летучей кислотой.

С этой целью чаще всего используют нелетучую термически устойчивую концентрированную серную кислоту:

NaNO 3 (тв) + H 2 SO 4 (конц) NaHSO 4 + HNO 3

KClO 4 (тв) + H 2 SO 4 (конц) KHSO 4 + HClO 4

  • вытеснением более слабой кислоты из ее солей более сильной кислотой:

Ca 3 (PO 4) 2 + 3H 2 SO 4 = 3CaSO 4 ↓ + 2H 3 PO 4

NaNO 2 + HCl = NaCl + HNO 2

K 2 SiO 3 + 2HBr = 2KBr + H 2 SiO 3 ↓

Формула кислоты Название кислоты Название соли Соответствующий оксид
HCl Соляная Хлориды ----
HI Йодоводородная Иодиды ----
HBr Бромоводородная Бромиды ----
HF Плавиковая Фториды ----
HNO 3 Азотная Нитраты N 2 O 5
H 2 SO 4 Серная Сульфаты SO 3
H 2 SO 3 Сернистая Сульфиты SO 2
H 2 S Сероводородная Сульфиды ----
H 2 CO 3 Угольная Карбонаты CO 2
H 2 SiO 3 Кремниевая Силикаты SiO 2
HNO 2 Азотистая Нитриты N 2 O 3
H 3 PO 4 Фосфорная Фосфаты P 2 O 5
H 3 PO 3 Фосфористая Фосфиты P 2 O 3
H 2 CrO 4 Хромовая Хроматы CrO 3
H 2 Cr 2 O 7 Двухромовая Бихроматы CrO 3
HMnO 4 Марганцовая Перманганаты Mn 2 O 7
HClO 4 Хлорная Перхлораты Cl 2 O 7

Кислоты в лаборатории можно получить:

1) при растворении кислотных оксидов в воде:

N 2 O 5 + H 2 O → 2HNO 3 ;

CrO 3 + H 2 O → H 2 CrO 4 ;

2) при взаимодействии солей с сильными кислотами:

Na 2 SiO 3 + 2HCl → H 2 SiO 3 ¯ + 2NaCl;

Pb(NO 3) 2 + 2HCl → PbCl 2 ¯ + 2HNO 3 .

Кислоты взаимодействуют с металлами, основаниями, основными и амфотерными оксидами, амфотерными гидроксидами и солями:

Zn + 2HCl → ZnCl 2 + H 2 ­;

Cu + 4HNO 3 (концентр.) → Cu(NO 3) 2 + 2NO 2 + 2H 2 O;

H 2 SO 4 + Ca(OH) 2 → CaSO 4 ¯ + 2H 2 O;

2HBr + MgO → MgBr 2 + H 2 O;

6HI + Al 2 O 3 → 2AlBr 3 + 3H 2 O;

H 2 SO 4 + Zn(OH) 2 → ZnSO 4 + 2H 2 O;

AgNO 3 + HCl → AgCl¯ + HNO 3 .

Обычно кислоты взаимодействуют только с теми металлами, которые в электрохимическом ряду напряжения стоят до водорода, при этом выделяется свободный водород. С малоактивными металлами (в электрохимическом ряду напряжения стоят после водорода) такие кислоты не взаимодействуют. Кислоты, являющиеся сильными окислителями (азотная, концентрированная серная), реагируют со всеми металлами, за исключением благородных (золото, платина), но при этом выделяется не водород, а вода и оксид, например, SO 2 или NO 2 .

Солью называют продукт замещения водорода в кислоте на металл.

Все соли делятся на:

средние – NaCl, K 2 CO 3 , KMnO 4 , Ca 3 (PO 4) 2 и др.;

кислые – NaHCO 3 , KH 2 PO 4 ;

основные – CuOHCl, Fe(OH) 2 NO 3 .

Средней солью называется продукт полного замещения ионов водорода в молекуле кислоты атомами металла.

Кислые соли содержат атомы водорода, способные участвовать в химических обменных реакциях. В кислых солях произошло неполное замещение атомов водорода атомами металла.

Основные соли – это продукт неполного замещения гидроксо-групп оснований многовалентных металлов кислотными остатками. Основные соли всегда содержат гидроксогруппу.

Средние соли получают взаимодействием:

1) кислоты и основания:

NaOH + HCl → NaCl + H 2 O;

2) кислоты и основного оксида:



H 2 SO 4 + CaO → CaSO 4 ¯ + H 2 O;

3) кислотного оксида и основания:

SO 2 + 2KOH → K 2 SO 3 + H 2 O;

4) кислотного и основного оксидов:

MgO + CO 2 → MgCO 3 ;

5) металла с кислотой:

Fe + 6HNO 3 (концентр.) → Fe(NO 3) 3 + 3NO 2 + 3H 2 O;

6) двух солей:

AgNO 3 + KCl → AgCl¯ + KNO 3 ;

7) соли и кислоты:

Na 2 SiO 3 + 2HCl → 2NaCl + H 2 SiO 3 ¯;

8) соли и щелочи:

CuSO 4 + 2CsOH → Cu(OH) 2 ¯ + Cs 2 SO 4 .

Кислые соли получают:

1) при нейтрализации многоосновных кислот щелочью в избытке кислоты:

H 3 PO 4 + NaOH → NaH 2 PO 4 + H 2 O;

2) при взаимодействии средних солей с кислотами:

СaCO 3 + H 2 CO 3 → Ca(HCO 3) 2 ;

3) при гидролизе солей, образованных слабой кислотой:

Na 2 S + H 2 O → NaHS + NaOH.

Основные соли получают:

1) при реакции между основанием многовалентного металла и кислотой в избытке основания:

Cu(OH) 2 + HCl → CuOHCl + H 2 O;

2) при взаимодействии средних солей со щелочами:

СuCl 2 + KOH → CuOHCl + KCl;

3) при гидролизе средних солей, образованных слабыми основаниями:

AlCl 3 +H 2 O → AlOHCl 2 + HCl.

Соли могут взаимодействовать с кислотами, щелочами, другими солями, с водой (реакция гидролиза):

2H 3 PO 4 + 3Ca(NO 3) 2 → Ca 3 (PO 4) 2 ¯ + 6HNO 3 ;

FeCl 3 + 3NaOH → Fe(OH) 3 ¯ + 3NaCl;

Na 2 S + NiCl 2 → NiS¯ + 2NaCl.

В любом случае реакция ионного обмена идет до конца только тогда, когда образуется малорастворимое, газообразное или слабо диссоциирующее соединение.

Кроме того, соли могут взаимодействовать с металлами при условии, что металл более активный (имеет более отрицательный электродный потенциал), чем металл, входящий в состав соли:

Fe + CuSO 4 → FeSO 4 + Cu.

Для солей также характерны реакции разложения:

BaCO 3 → BaO + CO 2 ­;

2KClO 3 → 2KCl + 3O 2 ­.

Лабораторная работа №1

ПОЛУЧЕНИЕ И СВОЙСТВА

ОСНОВАНИЙ, КИСЛОТ И СОЛЕЙ

Опыт 1. Получение щелочей.

1.1. Взаимодействие металла с водой.

В кристаллизатор или фарфоровую чашечку налейте дистиллированной воды (примерно 1/2 сосуда). Получите у преподавателя кусочек металлического натрия, предварительно подсушенного фильтровальной бумагой. Бросьте кусочек натрия в кристаллизатор с водой. По окончании реакции добавьте несколько капель фенолфталеина. Отметьте наблюдаемые явления, составьте уравнение реакции. Назовите полученное соединение, запишите его структурную формулу.



1.2. Взаимодействие оксида металла с водой.

В пробирку налейте дистиллированной воды (1/3 пробирки) и поместите в нее комочек CaO, тщательно перемешайте, добавьте 1 – 2 капли фенолфталеина. Отметьте наблюдаемые явления, напишите уравнение реакции. Назовите полученное соединение, дайте его структурную формулу.

Просмотров